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A B S T R A C T

In recent years, Transformer structures have been widely applied in image captioning with impressive
performance. However, previous works often neglect the geometry and position relations of different visual
objects. These relations are often thought of as crucial information for good captioning results. Aiming to
further promote the image captioning by Transformers, this paper proposes an improved Geometry Attention
Transformer (GAT) framework. In order to obtain geometric representation ability, two novel geometry-aware
architectures are designed respectively for the encoder and decoder in our GAT by i) a geometry gate-
controlled self-attention refiner, and ii) a group of position-LSTMs. The first one explicitly incorporates relative
spatial information into the image representations in encoding steps, and the second one precisely informs
the decoder of relative word positions for generating caption texts. The image representations and spatial
information are extracted by a pretrained Faster-RCNN network. Our ablation study has proved that these two
designed optimization modules could efficiently improve the performance of image captioning. The experiment
comparisons on the datasets MS COCO and Flickr30K, also show that our GAT could often outperform current
state-of-the-art image captioning models.
1. Introduction

Image captioning is a challenging problem in computer vision
(Farhadi et al., 2010). It aims to automatically describe an image
using meaningful text, translating an image into natural language. It
often requires to not only recognize what visual objects an image
contains, but also accurately capture what those objects are doing,
and even tell us what the interrelations of different objects are. Image
captioning could build a powerful bridge between visual images and
human languages. With captions, people could better understand an
image (Krishna et al., 2017). Image captioning has been thought of as
one quite useful technology in image analysis and understanding. In
recent years, it has been attracting more and more research attention,
so that diverse models have appeared for image captioning (Anderson
et al., 2018; Cornia, Stefanini, Baraldi, & Cucchiara, 2020; Rennie,
Marcheret, Mroueh, Ross, & Goel, 2017; Zhang, Li, Wang, Zhao and
Wang, 2021).

For image captioning, its early models could be roughly classified
into two primary categories (Bai & An, 2018). One category depends on
the image retrieval by analyzing image correlation and then retrieving
candidate texts from existing caption pools (Gupta, Verma, & Jawahar,
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2012; Ordonez, Kulkarni, & Berg, 2011). The other is summarized
as a template-based category. This kind of methods builds captions
typically through the syntactics and semantics analysis on images, with
visual concept detecting, sentence template matching and optimizing
(Kulkarni et al., 2013; Socher & Fei-Fei, 2010; Ushiku, Yamaguchi,
Mukuta, & Harada, 2015). The most obvious characteristic of these
two early categories is that hard-coded rules and manually-designed
features are in common use, so that the reliability and accuracy of
captioning could often fluctuate heavily (Bai & An, 2018).

In recent years, facilitated by booming artificial intelligence, neural
networks, the third category of models specially for image captioning,
have been becoming one of the most exciting and powerful tools. For
example, we could easily see the obvious captioning performance im-
provements on early algorithms, obtained by the deep neural models in
Karpathy, Joulin, and Li (2014), Ma, Lu, Shang, and Li (2015) and Yan
and Mikolajczyk (2015). Besides, more neural network-based models,
such as the multimodal learning (Karpathy & Fei-Fei, 2015, 2017), the
encoder–decoder framework (Vinyals, Toshev, Bengio, & Erhan, 2015),
the attention mechanism (Huang, Wang, Chen, & Wei, 2019; You, Jin,
Wang, Fang, & Luo, 2016), the compositional architectures (Oruganti,
vailable online 9 April 2022
957-4174/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.117174
Received 22 October 2021; Received in revised form 31 March 2022; Accepted 1 A
pril 2022

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
https://github.com/UESTC-nnLab/GAT
mailto:chi.w@std.uestc.edu.cn
mailto:yulinshen@std.uestc.edu.cn
mailto:jiluping@uestc.edu.cn
https://doi.org/10.1016/j.eswa.2022.117174
https://doi.org/10.1016/j.eswa.2022.117174
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.117174&domain=pdf


Expert Systems With Applications 201 (2022) 117174C. Wang et al.

l
e
e
t
L
s
I
t
h

Sah, Pillai, & Ptucha, 2016), the describing method of novel objects
(Mao et al., 2015) and the deep bifurcation network (Nabati & Behrad,
2021), have also been proposed one after another.

Through the survey of a large number of publications, it is easy to
figure out that the Transformer with an encoder–decoder structure is
becoming one of the most mainstream models for image captioning due
to its outstanding performance (Chen, Wang, Yang and Li, 2021; Guo
et al., 2020; Herdade, Kappeler, Boakye, & Soares, 2019; Zhou et al.,
2020). Generally in a typical Transformer model, a set of intermediate
vectors are extracted from a given image by an encoder with CNN-
based networks, and then the target caption of this image is generated
word by word through RNN-based decoder networks (Anderson et al.,
2018; Karpathy & Fei-Fei, 2015; Lu, Xiong, Parikh, & Socher, 2017;
Vinyals et al., 2015).

In addition, classic attention mechanism has also been widely uti-
lized in image captioning (Huang et al., 2019; You et al., 2016).
It could often effectively guide decoders to focus on some specific
information, such as context correlation, for generating image captions.
The captioning models with the self-attention mechanism (Vaswani
et al., 2017) are often believed to be more effective than their early
versions. In recent years, this kind of self-attention models have also
quickly emerged in image captioning (Herdade et al., 2019; Li, Zhu,
Liu, & Yang, 2019).

From the task view of image captioning, the geometry and position
relations of image objects are necessary to accurately describe an
image. For example, ‘‘a boy standing on a skateboard’’ and ‘‘a boy raises
a skateboard in his hands’’ represent two different semantics, though
they both contain the prominent visual objects ‘‘boy’’ and ‘‘skateboard’’
in an image. Therefore, the relative geometry information plays a key
role in describing images. In most of existing Transformer models
with attention modules, we could find that the inherent geometry and
position relations between image components have not yet be paid
enough attention to and fully utilized (Lu et al., 2017). Moreover,
although some methods, such as the GSA proposed in Guo et al. (2020),
carefully concern geometry relations in encoder, more precise position
decoding has not been well solved yet.

Geometry and position relations are so important that accurate
image captioning models have to emphasize them. In order to take
full advantage of geometry and position clues, we first design an
improved encoder model with Geometry Self-attention Refiner (GSR) in
our Transformer architecture. This model could explicitly incorporate
geometry information into Vanilla self-attention module, implementing
the transforming from original appearance queries to geometrical ones.
And then, the refined attention weights are calculated to get a mean
of weighted appearance values. The geometrical queries and keys in
our model are linearly derived from the bounding box coordinates of
each visual object. In this way, every object could always obtain its
appearance features and the geometry correlations with others. These
points are crucial for a decoder to generate the right word sequences
with position and semantics.

Furthermore, in the decoder of a Transformer architecture, it is
unable to handle the sequence order of input tokens at structure levels,
due to its parallel mechanism. It treats each token equally to facilitate
parallelism while ignoring their sequence order in output text. Some
methods inject the word position information of expected caption texts
by adding a sine or cosine operation on the top of word embedding
ayers, such as the methods in Herdade et al. (2019) and Vaswani
t al. (2017). This kind of position injection mechanism is proved
ffective, in spite of not always conforming to semantics. To overcome
his weakness of position decoding, we design a group of position-
STMs to model the word order of caption texts. It parses a caption
entence word by word in sequence, ensuring the right order of words.
n addition, the hidden layers of position-LSTMs could also remember
he information that decoder has generated. This kind of design is
2

elpful to self-attention modules to concentrate on particular position
parts. In the meanwhile, the information, stored in hidden states of
LSTMs, also contains the geometry information of visual objects.

Finally, by the integration and collaborative optimization of the
GSR and the position-LSTM, our captioning model has achieved better
performance than the state-of-the-art ones on the datasets MS COCO
and Flickr30k. In summary, the main contributions of this paper could
be listed as follows:

(i) An improved image captioning model, GAT is proposed on the
base of the traditional Transformer framework. It could reliably capture
the geometry relations of visual objects. Due to this merit, our model
could often obtain such a sense of ‘where the target objects are’ and ‘where
the captioning model is currently looking at’.

(ii) We design the encoders cooperated with a gate-controlled self-
attention refiner. It could efficiently encapsulate the relative geometry
information of objects, so as to further refine visual object representa-
tions.

(iii) We combine the decoders with a group of position-LSTMs.
The position-LSTM could deliver the word order of generated caption
text with relative position relations to the decoder. Therefore, it could
decide which word to generate next by a trained position reasoning
logic.

(iv) A group of ablation experiments, and two groups of offline/
online comparison experiments are designed on datasets MS COCO and
Flickr30K. These experiments prove the superiority of our GAT model
in image captioning.

2. Related work

The encoder–decoder architecture of Transformer is widely used
in many sequence-to-sequence problems, such as machine translation.
Given a group of tokens as input, the encoders extract mutual infor-
mation among these tokens and then generate new representations
which contain the context of these tokens. A group of decoders will
decode the intermediate vectors into a new sequence. The function
of encoder–decoder structure is to map an input sequence into its
target domain. To handle the sequence problem, the neural layers of
encoder and decoder are often designed by RNN, LSTM or self-attention
layers in previous works. Fig. 1 illustrates a typical encoder–decoder
Transformer architecture with self-attention layers.

In recent years, the Transformer, a kind of encoder–decoder ar-
chitecture with attention modules has been attracting wide research
enthusiasm in image captioning. As a result, more and more approaches
are developed for applications, such as the model by the semantic
alignment (Lu, Guo, Dai, & Wang, 2022), the method with resid-
ual connections (Gao et al., 2019), the one with meshed-memory
Transformer (Cornia et al., 2020) and the multi-stage aggregated Trans-
former (Zhang et al., 2021).

The classic architecture of Transformer for image captioning (Chen,
Wang et al., 2021; Guo et al., 2020; Herdade et al., 2019; Zhou et al.,
2020), could be clearly seen in Fig. 1. It consists of an encoder and a
decoder, one for extracting the mutual features of visual objects and
the other for generating caption texts. Fig. 1(a) shows the encoder–
decoder structure of the Transformer (Yan et al., 2022), whose layers
are designed by the self-attention modules with residual connections
(Herdade et al., 2019; Li et al., 2019). A classic self-attention module
is shown in Fig. 1(b).

In the publication (Guo et al., 2020), shown in Fig. 1, for the input
to the encoder, besides traditional object appearance features, it also
contains some novel geometry cues, such as object center, height and
width. As for the decoder, a position encoding operation has also been
employed to encode the accurate word sequence of caption text. A sim-
ple sine function is utilized to fulfill this task. The experiments in Guo
et al. (2020) proved that this kind of improvement by geometry and
position features is efficient. To our knowledge, this kind of encoder–

decoder architecture with attention components is believed to be one
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Fig. 1. (a) A typical Transformer framework for image captioning (Guo et al., 2020). 𝑁 means the number of layers, and 𝑦𝑡 is the embedding of the 𝑡th word in a generated
sequence. (b) A classic attention module. 𝑄,𝐾 and 𝑉 represent the Query matrix, the Key matrix and the Value matrix, respectively. Query could get its corresponding Value by
the weighted average of the similarities between two matrices Query and Key. In a self-attention module, it usually keeps 𝑄 = 𝐾 = 𝑉 .
of the most powerful baselines for image captioning (Chen, Wang et al.,
2021; Herdade et al., 2019; Xian, Li, Zhang, & Ma, 2022).

Moreover, in terms of the attention modules in image captioning,
there are all kinds of variants having been explored. For example,
we could see the multi-head attention in Vaswani et al. (2017), the
fully attentive paradigms (Li et al., 2019; Zhu, Li, Liu, Peng, & Niu,
2018), the meshed-connection attention (Cornia et al., 2020), the dual
attention (Yu, Zhang, & Wu, 2022), the RSTNet (Zhang et al., 2021)
and the task-adaptive attention (Yan et al., 2022).

In the future, more ingenious network design, more sophisticated
object features, more functional geometry relations, and more efficient
position encoding strategies, are believed to be mainstream research ex-
pectations for the further performance promotion of image captioning
methodologies (Chen, Jiang and Zhao, 2021; Liu, Ren, & Yuan, 2021;
Shen & Wang, 2022; Xian et al., 2022).

3. Proposed method

Our method generates grounded captions by attending to specific
image regions at each step. In terms of structure, it still retains a
classic encoder–decoder architecture. In its encoder, a geometry self-
attention refiner is designed to optimize image representations. And in
its decoder, a module for accurately decoding word sequences by LSTM
is adopted. More details about it can be seen in Fig. 2.

Given an input image I , in Fig. 2, we use (𝑋𝐴 ∈ R𝑁×𝑑 ) to represent
a set of image appearance regions, where 𝑁 is the index of image
region, and 𝑑 is the dimensionality of region data vector. Moreover, 𝑦 =
{𝑦1,… , 𝑦𝑇 } indicates a group of caption word vectors corresponding to
the image I .
3

3.1. Gate-controlled geometry self-attention refiner

Besides appearance information 𝑋𝐴, we incorporate geometry infor-
mation into Vanilla self-attention to refine the representation of image
objects, for the reason that it is beneficial to comprehend the intrinsic
relations among different visual objects. Therefore, we propose the GSR
to refine the visual information by taking the geometry information of
visual objects into consideration.

Given the geometry features of the objects 𝑋𝑔 ∈ R𝑁×5, each row of
𝑋𝑔 is a 5-dimensional vector, as follows:

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑆) (1)

where (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥) and 𝑆 represent the top-left coordinates,
the bottom-right coordinates of bounding box, and the relative size to
whole image, respectively. Moreover, all of them are normalized to
(0, 1).

Firstly, we obtain 𝑋𝐺 ∈ R𝑁×𝑑𝑚 by embedding 𝑋𝑔 into a higher
dimension form with an embedding layer followed by a ReLU non-
linearity operation. Then we combine appearance information with
geometry-related information by modifying the queries and keys as
follows:

𝑄′ = [𝑋𝐴𝑊𝑄𝐴
;𝑋𝐺𝑊𝑄𝐺

] (2)

𝐾 ′ = [𝑋𝐴𝑊𝐾𝐴
;𝑋𝐺𝑊𝐾𝐺

] (3)

where 𝑊𝑄𝐴
, 𝑊𝐾𝐴

are two learned appearance matrices and 𝑊𝑄𝐺
, 𝑊𝐾𝐺

are two learned geometry matrices, respectively. And all of them share
the dimensionality of R𝑑𝑚×𝑑𝑚 . Here, [;] indicates an operator of concate-
nation. 𝑄′ and 𝐾 ′ combine the appearance information of objects with
their geometry relations. This could be seen as a complementary means
to acquire the fine-grained knowledge of image objects. In details, the
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Fig. 2. The detailed architecture of our GAT. The GSR module in encoder generates the weighted mean of appearance features 𝑋𝐴 and geometry features 𝑋𝐺 . It is further refined
by a gate-controlled unit. Moreover, a group of position-LSTMs precisely deliver word order information into the decoders.
attention results of our model can be calculated by:

𝛺′ = 𝑄′𝐾 ′𝑇
√

2 × 𝑑𝑘
(4)

Therefore, the output of the GSR in our model can be calculated by:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑔(𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛺′)𝑉𝐴 (5)

Similar to the original Transformer (Vaswani et al., 2017), our
geometry refiner is also implemented in a multi-head self-attention
framework. In this framework, the geometry attention will be repeated
for ℎ times (so, called ℎ heads). In every time of repetition, it always
adopts a group of different projection matrices (𝑊 𝑘

𝑄𝐴
,𝑊 𝑘

𝐾𝐴
and 𝑊 𝑘

𝑉𝐴
)

to extract appearance features, and takes (𝑊 𝑘
𝑄𝐺

and 𝑊 𝑘
𝐾𝐺

) for to cap-

ture geometry features, where 𝑘 ∈ (1, 2,… , ℎ). All the results from
ℎ self-attention heads will also be concatenated together by a linear
projection, and then fed forward to their next layers.

Moreover, inspired by the work of Huang et al. (2019), we further
design a parallelly Gate-controlled Linear Unit (GLU) to continually
refine the output of geometry self-attention module (the left region of
Fig. 2). This GLU still takes the current context (𝑐 = [𝑋𝐴;𝑋𝐺]) as its
input to generate a control matrix 𝐺 for modulating its final attention
output by Hadamard product. This group of neural computation can be
mathematically expressed by Eq. (6):
{

𝐺𝑎𝑡𝑒𝐶𝑡𝑟𝑙 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑔𝑐 + 𝑏𝑔)

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐺𝑎𝑡𝑒𝐶𝑡𝑟𝑙 ⊙ (𝑊𝑖𝑎̃ + 𝑏𝑖)
(6)

where 𝑊𝑔 ,𝑊𝑖 ∈ R𝑑𝑚×𝑑𝑚 are two groups of weights, and 𝑏𝑔 , 𝑏𝑖 ∈ R𝑑𝑚

are two groups of neuron biases. Furthermore, ⊙ denotes a Hadamard
product. In terms of structure, our self-attention component and gate-
controlled unit could often be stacked into more multiple layers to
further optimize object representations.

Subsequently, the self-attention output is embedded with its original
input by the operation of Adding & Normalization, then transferred to its
next layer, 𝑖.𝑒., the Feed-Forward sub-layer network shown in the middle
of Fig. 2. In details, this Feed-Forward sub-layer usually contains two
groups of nested affine transformations with the activation function,
𝑅𝑒𝐿𝑈 (𝑥) = 𝑚𝑎𝑥(0, 𝑥). Therefore, this group of processing steps could
be uniformly formulated by

𝐹𝐹 (𝑋) = 𝑚𝑎𝑥(0, 𝑋𝑊1 + 𝑏1)𝑊2 + 𝑏2 (7)

where 𝑊1 and 𝑊2 are two groups of weight matrices to be learned,
𝑏1 and 𝑏2 are also two groups of biases. As in the Transformer archi-
tecture (Vaswani et al., 2017), each sub-layer is successively followed
by residual connections and layer normalizing. Therefore, this group of
computation could be mathematically expressed by
{

𝑍 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑔(𝑋))
𝑟 (8)
4

𝑋 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍 + 𝐹𝐹 (𝑍))
3.2. Position-aware self-attention decoder

(i) Encoding positions via LSTM.
To address the word order problem of caption sequences, existing

models usually inject some ‘positional encoding ’ into the word embed-
ding layer with a sine function. In our method, we further exploit an
improved position representation strategy and then devise a distinctive
LSTM-based position encoding mechanism.

The position-LSTM in our decoder of Transformer could model the
order of image caption words in decoding process. For each time step
𝑡, we define the input of the position-LSTM as follows:

𝑥𝑡 = [𝑤𝑡, 𝑣̄] (9)

where 𝑤𝑡 is the word embedding derived by a one-hot vector, and
𝑣̄ = 1

𝑘𝛴𝑖𝑣𝑖 denotes the mean pooling of image features. Therefore, we
could obtain:

ℎ𝑡, 𝑐𝑡 = 𝐿𝑆𝑇𝑀
(

𝑥𝑡, (ℎ𝑡−1, 𝑐𝑡−1)
)

(10)

In view of the sequentiality output of LSTM, ℎ𝑡 could often be treated
as an encoding of sequence order for caption words. Such an encoding
could provide its subsequent decoder with precise position information
in two aspects. One is what words have been generated by far, and the
other is to where the decoder is directing the current relative position of
objects. In addition, this position encoding will also be updated at each
time step, and meanwhile it could also guide the decoder to adaptively
focus on its correlated regions in geometry-aware mode.

(ii) Injecting position encodings into the decoder
Given a set of refined region features 𝑋𝑟 and a group of current

position encoding vectors ℎ𝑡, our decoder could generate a multi-layer
structure sequence 𝑦̂. As shown in Eq. (7), each decoding layer of our
model always contains a sub-layer of attention and a sub-layer of feed-
forward output. Sometimes, such a layer may seems a little redundant.
Therefore, in experiments we consider to remove one self-attention sub-
layer so as to compress the network size of GAT, and then to further
analyze the influence of removing attention sub-layer on captioning
performance.

Furthermore, the group of decoders at bottom firstly achieve the
current position encoding ℎ𝑡 to calculate the 𝑄𝑢𝑒𝑟𝑦, and then use the
region features 𝑋𝑟 to calculate the 𝐾𝑒𝑦𝑠 and 𝑉 𝑎𝑙𝑢𝑒𝑠. Then, the scaled
attention results by dot-product could be obtained from a multi-head
pattern. For the back layers of decoders, however, they always adopt
the output of previous layers as the 𝑄𝑢𝑒𝑟𝑦. As a result, at each time
step 𝑡, through the conditioning operations on the output of top-layer
decoder, the distribution probability of the 𝑡th word could be calculated
by:

𝑝(𝑦𝑡 ∣ 𝑦1∶𝑡−1) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑝𝑡 + 𝑏𝑝) (11)

where 𝑊𝑝 ∈ R|𝛴|×𝑚 and 𝑏𝑝 ∈ R|𝛴| are also two groups of learnable
parameters, and  is the final output of designed decoder in our model.
𝑡
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4. Experiments

4.1. Datasets and metrics

We evaluate our model on the MS COCO (Lin et al., 2014) and the
Flickr30k (Young, Lai, Hodosh, & Hockenmaier, 2014). MS COCO is
one of the largest datasets for image captioning, consisting of 123 287
images, with 5 ground-truth (GT) captions per image. For reliable val-
idation and offline evaluation, we employ the widely-used ‘‘Karpathy ’’
split (Karpathy & Fei-Fei, 2015), containing 113 287 images for train-
ing, 5000 for validation and 5000 for test. Flickr30k contains 31 783
images, also with 5 GT captions per image. For the fair comparisons
with other methods, we still conform to the same data preparation
in Karpathy and Fei-Fei (2015) and Yang, Tang, Zhang, and Cai (2019),
𝑖.𝑒., truncating all the GT captions longer than 16 words and converting
the remainders into lower cases. By doing so, we obtain an experimen-
tal vocabulary consisting of 9487 words from MS COCO and 7000 ones
from Flickr30k, respectively.

Following public convention, there are five classic metrics to be
adopted for evaluating the performance of image captioning. They con-
sist of BLEU (Papineni, Roukos, Ward, & Zhu, 2002), METEOR (Baner-
jee & Lavie, 2005), ROUGE (Lin, 2004), CIDEr
(Vedantam, Lawrence Zitnick, & Parikh, 2015) and SPICE (Anderson,
Fernando, Johnson, & Gould, 2016). All these metrics can efficiently
evaluate the captioning texts on their ground-truth captions. They focus
on some different aspects of generated caption texts, such as adequacy
and fluency. Please refer to the Appendix of this paper for more details.

4.2. Implementation details

We employ a pre-trained Faster R-CNN model with a backbone of
ResNet-101 on dataset ImageNet to extract 36 features for each image.
We use the same model weights offered in Anderson et al. (2018)
for fair comparisons. The dimensionality of output feature vectors is
2048. And we project them into 512 dimensions to reduce memory
consumption. The hidden size of LSTM is set to 1024. In addition,
the dimensionality of the input to both the GSR and the self-attention
module is set to 512. Moreover, the number of self-attention heads
is 8. We set the number of layers to 3, in both the encoder and the
decoder. In LSTM, the dropout rate is 0.5, and the dropout rate of all
self-attention layers is set to 0.1. In the stage of cross-entropy training,
we train our model using an initial learning rate of 5 × 10−4 with a
decay rate of 0.8 for every 3 epochs. In CIDEr optimizing, we train
our model in 30 epochs, by a learning rate of 2 × 10−5 with a decay
factor of 0.8 also for every 3 epochs. All compared models are trained
by the Adam optimizer with a batch size of 50. In tests, we always use
a same beam size of five for all. Moreover, all models are trained on
the training spilled of datasets, and evaluated on validation datasets to
select the model with the best performance. Like these methods in Guo
et al. (2020) and Huang et al. (2019), we also use a classic CIDEr metric
to select our optimal model on validation datasets.

4.3. Ablation experiments

To quantify the performance of our new modules, we design a group
of ablative experiments on MS COCO. We use the Vanilla Transformer
(see Fig. 1) as our experiment ‘base’. It is similar to the self-attention
network (Guo et al., 2020). Its encoders do not consider the geometry
information, and decoders are only simply combined with common sine
position encodings.

(i) Effect of Geometry Self-attention
We first apply the GSR to the ‘base’ model to evaluate its effect

on encoders. Our GSR refines raw image representations by injecting
explicit geometry relations with a multi-layer mode. From Table 1, we
could see that it obtains an obvious improvement of CIDEr score from
5

Table 1
Ablation experiment comparisons. The results are reported after cross-entropy loss stage
on the dataset ‘‘Karpathy’’ test split (Karpathy & Fei-Fei, 2015).

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

Base 75.0 32.8 27.3 55.5 109.0 20.6
Base+GSR 76.9 35.6 28.1 57.0 115.1 21.4
Base+position-LSTM 76.5 34.5 28.0 56.8 114.9 21.3

Full: GAT 77.5 37.8 28.5 57.6 119.8 21.8

109.0 to 115.1 by applying our GSR. This comparison demonstrates
that the base model without geometry relations could be confused by
irrelevant regions and misled by wrong information. Admittedly, our
GSR could furnish the base model with a sense of ‘where’. It means that
our model could look purposefully, and thus it generates the caption
with precise order and geometry-aware words.

(ii) Effect of Position LSTM
We further evaluate the efficiency of position-LSTM modules on

image captioning. We replace the simple sine position encoding in
Guo et al. (2020), with our LSTM-based ones. From the experimental
comparisons in Table 1, we could see that our position-LSTM has raised
the CIDEr score of ‘base’ model by 5.9. Compared with sine encoding,
our position-LSTM could provide the decoder with an expressive en-
coding for ‘where’ to decode, and also guide the decoder to capture the
correlated semantic information from image regions.

(iii) Geometry Queries and Keys
To verify the efficiency of concatenating geometrical queries and

keys with appearance queries and keys, we investigate different strag-
gles to combine them. Mainly, we directly compare two operations,
including ‘add’ (adding) and ‘concat ’ (concatenating). Table 2 shows the
comparison results of these two operations. Compared with concatenat-
ing, we could see that, the performance promotion by concatenating
appearance queries and keys with geometry queries and keys is better
than by adding them, although they both could surpass the base model
in terms of most metrics. For example, the BLEU-1 is only 75.0 by the
base model, however it rises to 76.0 and 77.5 by ‘add’ and ‘concat ’,
respectively. Adding means that these two groups of different queries
and keys share one set of common weights and use a same update rate.
It is often not necessary in the case of image captioning.

(iv) Gate-controlled Linear Unit
In our architecture, the GLUs play an important role on refining the

output of original self-attention layers, therefore we also have tested
its effect on both encoders and decoders. Table 2 lists the comparison
results. We could see that the GLUs could always achieve a good
performance promotion on base model. However, we could also see
that the GLU works best when it cooperates alone with encoders. Even,
if our GLUs are assembled with encoders and decoders at the same time,
on the contrary, they could even get worse. For example, in Table 2, the
SPICE by the base model without GLUs is 21.2, and it gets to 21.8 when
the GLUs are integrated only with encoders. However, the SPICE drops
to 21.5 when the GLUs are combined with all encoders and decoders,
exactly consistent with Huang et al. (2019). A probable explanation
for this phenomena is that stacking too many GLUs on decoders could
damage the gradient of network training, depressing the capacity of
self-attention layers.

4.4. Numeric comparisons

We have also compared our GAT model with several state-of-the-art
approaches of recent years. On dataset MS COCO, these comparison
methods mainly include the SCST (Rennie et al., 2017) to directly
optimize evaluate metrics, the Up–Down model (Anderson et al., 2018)
with two-layer LSTM structure for extracting bottom-up features, and

the ORT (Herdade et al., 2019) employing a Transformer-like model
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Table 2
The comparison results of different component combination strategies, including geometry Queries and Keys, and the GLU module in the Transformer structure.

Modules Strategy BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

With geometry Q & K add. 76.0 35.1 27.2 56.0 116.4 20.7
concat. 77.5 37.8 28.5 57.6 119.8 21.8

With GLU
Without GLU 76.7 35.2 27.6 56.5 114.9 21.2
GLU(enc.) 77.7 37.8 28.4 57.4 119.4 21.8
GLU(enc. and dec.) 77.4 37.8 28.2 57.1 118.9 21.5
Table 3
The offline comparisons with some state-of-the-art methods on the ‘Karpathy ’ test splits of MS COCO. All data in columns, the higher the better performance. The visual features
of compared models are extracted by a same structure with the Faster RCNN (Anderson et al., 2018). Our model has reduced the dimensionality of embedding from 2048 to 512,
due to the limitation of main memory capability.

Model Cross-Entropy loss CIDEr-D optimization

BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE BLEU-1 BLEU-4 METEOR ROUGE CIDEr SPICE

Single model

SCST (Rennie et al., 2017) – 30.0 25.9 53.4 99.4 – – 34.2 26.7 55.7 114.0 –
Up-Down (Anderson et al., 2018) 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
RFNet (Jiang et al., 2018) 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2
GCN-LSTM (Yao et al., 2018) 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
SGAE (Yang et al., 2019) – – – – – – 80.8 38.4 28.4 58.6 127.8 22.1
ORT (Herdade et al., 2019) – – – – – – 80.5 38.6 28.7 58.4 128.3 22.6
AoANet (Huang et al., 2019) 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.0 58.8 129.8 22.4

GAT (ours) 77.5 37.8 28.5 57.6 119.8 21.8 80.8 39.7 29.1 59.0 130.5 22.9

Ensemble/Fusion

SCST (Rennie et al., 2017)𝛴 – 32.8 26.7 55.1 106.5 – – 35.4 27.1 56.6 117.5 –
RFNet (Jiang et al., 2018)𝛴 77.4 37.0 27.9 57.3 116.3 20.8 80.4 37.9 28.3 58.3 125.7 21.7
GCN-LSTM (Yao et al., 2018)𝛴 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1
SGAE (Yang et al., 2019)𝛴 – – – – – – 81.0 39.0 28.4 58.9 129.1 22.2
AoANet (Huang et al., 2019)𝛴 78.7 38.1 28.5 58.2 122.7 21.7 81.6 40.2 29.3 59.4 132.0 22.8

GAT (Ours)𝛴 79.0 38.8 28.7 58.9 123.7 22.1 81.6 40.7 29.4 59.6 133.4 23.2
with an object relation module. Besides, we also compare our model
with the RF-Net (Jiang, Ma, Jiang, Liu, & Zhang, 2018) which em-
ploys features by multiple CNNs, the GCN-LSTM (Yao, Pan, Li, &
Mei, 2018) exploiting pairwise relations by Graph Convolutional Net-
work, the GAE (Yang et al., 2019) via auto-encoding scene graphs,
the AoANet (Huang et al., 2019) refining self-attention results also by
GLUs. On Flickr30k, the models compared with ours include the Soft-
Attention & Hard-Attention (Xu et al., 2015), the Deep VS (Karpathy &
Fei-Fei, 2015), the NIC (Vinyals et al., 2015), the m-RNN (Mao et al.,
2014), the adaptive model (Lu et al., 2017), the SEM architecture (Cai
& Liu, 2020) and the DA framework (Gao et al., 2019).

(i) Offline Evaluation
We also evaluate our model on the ‘Karpathy ’ test split of MS

COCO, as in Karpathy and Fei-Fei (2015). All models are firstly trained
by cross-entropy loss, and then optimized on CIDEr scores. For fair
comparisons, the visual features fed to all models are directly extracted
by a Faster R-CNN of same structure. The top half of Table 3 (𝑖.𝑒., Single
Model) shows the numeric comparisons of all models. It could be seen
that our GAT outperforms all other methods on almost all metrics, in
terms of cross-entropy loss and CIDEr Optimization. Compared with
the ORT (Herdade et al., 2019), on CIDEr-D optimization, our GAT has
obtained a BLEU-4 rise of 1.1%, METEOR rise of 0.4%, a ROUGE rise of
0.6%, CIDEr rise of 2.2%, and a SPICE rise of 0.3%. The rise values by
single model seem quite obvious. Especially on BLEU-4, it achieves an
increase from 38.6 to 39.7, and on CIDEr it rises from 128.3 to 130.5.
Similarly, our GAT also outperforms the AOANet (Huang et al., 2019),
in terms of almost all metrics except the CIDEr of Cross-Entropy.

Moreover, in the down half of Table 3 (𝑖.𝑒., the Ensemble/Fusion),
it shows the comparisons of 6 different captioning models. Every model
is tested for 4 times, respectively under 4 different initialization condi-
tions, and then only the mean of 4 outputs is used for the comparisons
of captioning models. We could also see that, our GAT could surpass
all other models on almost all metrics of Cross-Entropy Loss. Even on
the metrics of CIDEr-D optimization, our BLEU-1 could almost keep
6

the same as the AOANet (Huang et al., 2019), the best of all other
models. On the rest metrics of CIDEr-D optimization, our GAT could
always outperform all other models. For example, on the CIDEr of
Cross-Entropy loss, our model achieves a result of 123.7, just 1.0 higher
than the AOANet (Huang et al., 2019). And on the CIDEr of CIDEr-D
optimization, our model rises to 133.4, however the AOANet (Huang
et al., 2019) is only 132.0, approximately 1.4 less than ours.

In Table 4, we compare the performance of our GAT with state-of-
the-art models on dataset Flickr30k. It could be seen that our model
outperforms all the compared methods by a large margin. For exam-
ple, compared with the one similarly employing an attention mech-
anism (Xu et al., 2015), our GAT obtains an improvement of 7.5
on BLEU-1, 10.9 on BLEU-4 and 4.9 on METEOR, respectively. Even
compared with the DA model (Gao et al., 2019), the best of other eight
models, our GAT still could often achieve higher score than the DA (Gao
et al., 2019) on all metrics. For example, our GAT could get an increase
of about 0.6, 1.4 and 1.4 on BLEU-1, BLEU-4 and CIDEr, respectively.
This group of comparisons further demonstrate the superiority of our
GAT method.

(ii) Online Evaluations
For fairer comparison, and knowing the true rank of our work in

image captioning, we also submitted our GAT to an open test server
specially for MS COCO. Our model is trained locally, updated to the
website, and automatically evaluated by the cloud server. Note that
online test data is not public, and nobody except official staff has the
access authority to the test data. The last row in Table 5 lists the test
results of our GAT model. In this test, an ensemble of 4 different outputs
of our model trained by the ‘Karpathy ’ split is used for the comparisons
with others. From Table 5, we could see that our GAT obtains the
best captioning performance on each c5 of almost all metrics, and it
is a bit lower than others only on the c40 of three metrics (BLEU-1,
METEOR and ROUGE). For example, it is 127.8 on CIDEr(c5), almost
0.9 higher than the best one of others, 𝑖.𝑒., the AoANet (Huang et al.,
2019). Even on BLEU-1(c40) and ROUGE(c40), our GAT is only a paltry
0.2 lower than the SGAE (Yang et al., 2019) and 0.1 lower than the
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Table 4
The offline comparison results with state-of-the-art methods on dataset Flickr30k. The higher, the better for the data in all data columns.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr

Deep VS (Karpathy & Fei-Fei, 2015) 57.3 36.9 24.0 15.7 15.3 24.7
Soft-Attention (Xu et al., 2015) 66.7 43.4 28.8 19.1 18.5 –
Hard-Attention (Xu et al., 2015) 66.9 43.9 29.6 19.9 18.5 –
Google NIC (Vinyals et al., 2015) 66.4 42.3 27.7 18.3 – –
m-RNN (Mao et al., 2014) 60.0 41.0 28.0 19.0 – –
Adaptive (Lu et al., 2017) 67.6 49.4 35.4 25.1 20.4 53.1
SEM (Cai & Liu, 2020) 73.1 55.1 40.1 29.0 22.0 66.8
DA (Gao et al., 2019) 73.8 55.1 40.3 29.4 23.0 66.6

GAT (ours) 74.4 56.7 41.8 30.8 23.4 68.0
Table 5
The leaderboard of various methods on the online test server specially for MS COCO. Our method, the GAT model, went into the top 10 list of leaderboard, when submitted online
to https://competitions.codalab.org/competitions/3221 on June 5th, 2020.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

SCST (Rennie et al., 2017) 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.0
Up-Down (Anderson et al., 2018) 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
RFNet (Jiang et al., 2018) 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GCN-LSTM (Yao et al., 2018) – – 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE (Yang et al., 2019) 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet (Huang et al., 2019) 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
NG-SAN (Guo et al., 2020) 80.8 95.0 65.4 89.3 50.8 80.6 38.8 70.2 29.0 38.4 58.7 74.0 126.3 128.6

GAT (Ours) 81.1 95.1 66.1 89.7 51.8 81.5 39.9 71.4 29.1 38.4 59.1 74.4 127.8 129.8
AoANet (Huang et al., 2019). Therefore, on the whole, our GAT model
could be synthetically deemed to be more superior than the other ones.

4.5. Caption text comparisons

To visually illustrate the superiority of our model, in Fig. 3 we
present ten typical images with the captions generated by our GAT,
the AoANet (Huang et al., 2019) and the Vanilla Transformer (𝑖.𝑒., the
base), respectively. Moreover, the three ground-truth captions (𝑖.𝑒., the
GT1∼ GT3) of each image are also shown in Fig. 3.

It could be seen that the image captions with semantics and position
relations, generated by our GAT, are often more precise than those by
the AoANet (Huang et al., 2019). For example, It can be seen that our
GAT could capture the visual objects ‘‘sheep’’ and ‘‘fence’’, as well as
the position relation (𝑖.𝑒., ‘‘next to’’) between ‘‘a herd of sheep’’ and the
‘‘wooden fence’’. In contrast, the AoANet can also capture the ‘‘a group
of sheep’’ and the ‘‘a fence’’, however it does not precisely concern the

aterial feature of ‘‘a fence’’, 𝑖.𝑒., the ‘‘wooden’’.
This advantage, that our GAT is able to accurately describe the

eometry and position relations, mainly owes to the GSR module which
xplicitly incorporates the spatial correlations of image regions into
bject feature representations. Moreover, the position-LSTM could also
eep reminding the decoders which visual object should be attended
o, at every decoding step. Therefore, our GAT could often generate
he highly-sufficient captions with spatial-aware semantics.

In addition, our experiments show that the GAT method with non-
ptimal parameters sometimes would over-emphasize the geometry
elations of objects while making captioning sentences. In this case,
he captions generated by our GAT could be less acceptable to human
nderstanding. In our training and tests, some typical results are saved
nd could be seen in Fig. 4. For example, it generates the ‘‘sitting in the
ater ’’ rather than the ‘‘sitting on the water ’’ to describe the top left

mage in 4. Moreover, although our method tries to describe visual
bjects as many as possible and capture their geometry relations, it
ould also output some image captions with low fluency and semantic
recision, such as the left one and the right one in the second row of
7

ig. 4.
Table 6
The comparisons of computation cost and parameter scale between our GAT and the
baseline model. It shows that our model has fewer parameters and higher inference
speed.

Captioning models Parameter scale Average time (per image)

Baseline model 70.6M 190 ms
Our GAT 37.0M 148 ms

4.6. Computation cost

Table 6 shows the computational burden of our GAT, compared to
the base model mentioned in 4.3, 𝑖.𝑒., the Vanilla Transformer. The
results are obtained on the platform with the GPU of Nvidia 2080 Super
and the CPU of Intel 9900K.

Due to the high GPU memory consumption of LSTMs in model
training, we decrease the number of encoder layers to 3, while the
base model has 6 encoder layers. So the computational cost during the
inference stage decreases, though we incorporate two new modules into
our GAT model. Our method could usually obtain better performance
with less inference time. For example, on two datasets the average cap-
tioning time is 148 ms by our GAT with only 37M parameters, however
it is 190 ms by the base model with more than 70M parameters. The
parameter quantity of our GAT model is approximately 52% of the base
model, and the time cost of our GAT is only 77.8% of the base model.
By comparisons, it could be believed that our model has the advantages
of fewer parameters and faster caption generating speed.

5. Conclusions and future research

In this paper, we propose the Geometry Attention Transformer, an
improvement and extension framework of the well-known Transformer
for image captioning in recent years. Our model is able to explicitly
refine image representations by incorporating the geometry features
of visual objects into region encodings. Moreover, the position-LSTMs
in decoder layers could also fulfill the precise encoding for the word
order of caption texts. The ablation experiments on baseline model
show that, the GSR for capturing geometry features and the position-
LSTMs for injecting position encodings could often be effective. Each of

them, if cooperating with a base model, could obviously promote image

https://competitions.codalab.org/competitions/3221
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Fig. 3. The output comparison of captions generated respectively by our GAT and a base model, as well as three manual description captions of ground truth, GT1∼GT3.
Fig. 4. Some typical image captioning results with wrong words, generated by our GAT under non-optimal parameter training.
captioning performance. In addition, the experimental comparisons
(offline & online) also show that our GAT framework could often
outperform other state-of-the-art ones on both MS COCO and Flickr30k.
8

In the future, besides geometry relationships, some typical topics on
latent semantic information, such as object action and intention, could
be worthy of further research. In terms of neural network frameworks,



Expert Systems With Applications 201 (2022) 117174C. Wang et al.

s
l
r
c

C

w

w
m
w

T
n
a
𝑖
i

C

r
w
C

C

𝑙
t

the Vision Transformers are currently receiving more and more re-
earch attention. Therefore, some highly-efficient neural frameworks
ike the Vision Transformer and more reliable machine learning algo-
ithms would be believed to be the hot spots of future research in image
aptioning.
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Appendix. The computation of metrics

BLEU. Bilingual Evaluation Understudy (BLEU) (Papineni et al.,
2002) is the first mertic to measure the quality of machine generated
text. A set of 𝑛 consecutive words is called an n-gram. BLEU scores
measure how many n-grams of generated text appear in reference texts,
which is also known as ‘‘precision’’.

𝑃𝑛(𝑐, 𝑆) =
∑

𝑘 min(ℎ𝑘(𝑐), 𝑚𝑎𝑥𝑗∈𝑚(ℎ𝑘(𝑆𝑗 )))
∑

𝑘 ℎ𝑘(𝑐)
(A.1)

𝑐 is the generated text, 𝑆 is the set of reference text, and 𝑆𝑗 is the 𝑗th
reference text. ℎ𝑘(𝑠) indicates the number of 𝑘th n-gram of 𝑐 appears
in text 𝑠.

BLEU = 𝑏𝑝 ⋅ 𝑒𝑥𝑝(
𝑁
∑

𝑛=1
𝑤𝑛𝑙𝑜𝑔𝑃𝑛) (A.2)

𝑤𝑛 is the weight assign to different n-gram scores 𝑃𝑛, which is usually
set to be 1∕𝑁 . 𝑏𝑝 is a penalty factor to force the length of the generated
text no shorter than the reference text. 𝑏𝑝 = exp 1 − 𝑙𝑐∕𝑙𝑠, when 𝑙 < 𝑐,
otherwise 𝑏𝑝 = 1, where 𝑙𝑠 is the length of the shortest reference text,
𝑙𝑐 is the length of the generated text.

ROUGE. Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin, 2004) is a set of metrics that are used for measuring the
quality of text summary, and it mainly focuses on the recall of n-grams
of the reference text.

ROUGE-N(𝑐, 𝑆) =

∑

|𝑆|
𝑗=1

∑

𝑘 min(ℎ𝑘(𝑐), ℎ𝑘(𝑆𝑗 ))
∑

|𝑆|
𝑗=1 𝑀𝑗

(A.3)

𝑀𝑗 is the number of n-grams in 𝑆𝑗 .
There are many variants of ROUGE, such as ROUGE-S and ROUGE-

L which takes longest common subsequence problem into account
sentence level structure similarity and identifies longest co-occurring
in sequence n-grams.

METEOR. Metric for Evaluation of Translation with Explicit OR-
dering (METEOR) (Banerjee & Lavie, 2005) is a metric calculated by
the harmonic mean of unigram precision and recall, where recall plays
a more important role than precision. Besides exact word matching,
9

(

METEOR has stemming and synonymy matching, which leads to a
better correlation with human judgements than BLEU.

The unigrams in the generated text are mapped to those in refer-
ence texts by the matching of exact word, stemming and synonymy.
METEOR scores could be calculated by following equations.

𝑃𝑚 = 𝑚
∑

𝑘 ℎ𝑘(𝑐)
(A.4)

𝑅𝑚 = 𝑚
∑

𝑘 ℎ𝑘(𝑆𝑗 )
(A.5)

𝐹𝑚𝑒𝑎𝑛 =
𝑃𝑚𝑅𝑚

𝛼𝑃𝑚 + (1 − 𝛼)𝑅𝑚
(A.6)

𝑝 = 𝛾( 𝑐ℎ
𝑚

)𝜃 (A.7)

𝑀 = (1 − 𝑝)𝐹𝑚𝑒𝑎𝑛 (A.8)

where 𝑚 is the number of unigrams in the candidate translation which
appear in the reference translations. ℎ𝑘(𝑠) indicates the number of 𝑘th
unigram appears in text 𝑠. So 𝑃𝑚 is the precision metric and 𝑅𝑚 is the
recall metric. 𝐹𝑚𝑒𝑎𝑛 is the harmonic mean of precision and recall. In
order to take longer sentences into account rather than unigrams, the
penalty 𝑝 is imported. Unigrams are grouped into the fewest possible
chunks, where a chunk is defined as a set of unigrams that are adjacent
in the generated text and in the reference text. The longer the adjacent
mappings between the candidate and the reference, the fewer chunks
there are. So 𝑐ℎ is the number of the chunks and 𝑀 is the METEOR
score. 𝛼, 𝛾, 𝜃 are usually set to 0.1, 0.5, 3 for fair comparisons.

CIDEr. Consensus-based Image Description Evaluation (CIDEr)
(Vedantam et al., 2015) is an automatic consensus metric for evaluating
image descriptions. For n-grams, CIDErn could be gained from:

CIDErn(𝑐, 𝑆) =
1
|𝑆|

|𝑆|
∑

𝑗=1

𝐠𝐧(𝑐) ⋅ 𝐠𝐧(𝑆𝑗 )

‖𝐠𝐧(𝑐)‖ ⋅ ‖‖
‖

𝐠𝐧(𝑆𝑗 )
‖

‖

‖

(A.9)

here 𝑐 is the generated text, and 𝑆 is the set of reference text, and
𝐠𝐧(𝑠) is the vector formed by TF-IDF scores of all n-grams in text 𝑠.

TF-IDF is short for Term Frequency-Inverse Document Frequency,
hich measures the importance of a word in a specific sentence. The
ore the word appears in the text, and the less the word appears in the
hole corpus, the more important it would be.

𝑔𝑘(𝑐) = TF(𝑘) ∗ IDF(𝑘) (A.10)

TF(𝑘) =
ℎ𝑘(𝑐)

∑

𝑙 ℎ𝑙(𝑐)
(A.11)

IDF(𝑘) = log( 𝑁
∑𝑁

𝑖=1 min(1,
∑

|𝑆𝑖
|

𝑗=1 ℎ𝑘(𝑆
𝑖
𝑗 ))

) (A.12)

he TF-IDF score of the 𝑘th n-gram could be gained from 𝑔𝑘(𝑐). 𝑁 is the
umber of all cases, each of which consists of the generated sentence
nd a set of reference sentences. 𝑆𝑖 is the set of reference sentences of
th case, and 𝑆 𝑖

𝑗 means the 𝑗th sentence in 𝑆 𝑖. The scores of all n-grams
n 𝑐 form the 𝐠𝐧(𝑐) vector.

And the overall CIDEr score is the average of the CIDern set:

IDEr = 1
𝑁

𝑁
∑

𝑛=1
CIDErn(𝑐, 𝑆) (A.13)

When optimizing an algorithm for a specific metric undesirable
esults may be achieved. The gaming of a metric may result in sentences
ith high scores, yet produce poor results when judged by a human.
IDEr-D is a variant of CIDEr, and is more robust to ‘‘gaming’’.

IDEr-D𝑛(𝑐, 𝑆) =
10
|𝑆|

∑

𝑗
𝑒
−(𝑙(𝑐)−𝑙(𝑆𝑗 ))2

2𝜎2 ∗
min(𝐠𝐧(𝑐), 𝐠𝐧(𝑆𝑗 )) ⋅ 𝐠𝐧(𝑆𝑗 )

‖𝐠𝐧(𝑐)‖ ⋅ ‖‖
‖

𝐠𝐧(𝑆𝑗 )
‖

‖

‖

(A.14)

(𝑐) is the length of the generated sentence, and 𝑙(𝑆𝑗 ) is the length of
he reference sentence 𝑆𝑗 .
SPICE. Semantic Propositional Image Caption Evaluation (SPICE)
Anderson et al., 2016) is a new caption evaluation metric based on



Expert Systems With Applications 201 (2022) 117174C. Wang et al.

g
o
m

R

A

A

B

B

C

C

C

C

F

G

semantic concept. SPICE uses a graph-based semantic representation
to encode the objects, attributes, and relationships in captions. It first
parses the to-be-evaluated captions and reference captions into syntac-
tic dependency trees using Probabilistic Context-Free Grammar (PCFG)
dependency parser, and then maps the dependency trees into scene
graphs using a rule-based approach. Finally, it calculates the F-score
value of the objects, attributes and relationships in the caption to be
evaluated.

SPICE(𝑐, 𝑆) = 𝐹1(𝑐, 𝑆)

=
2 ⋅ 𝑃 (𝑐, 𝑆) ⋅ 𝑅(𝑐, 𝑆)
𝑃 (𝑐, 𝑆) + 𝑅(𝑐, 𝑆)

(A.15)

𝑃 (𝑐, 𝑆) =
|𝑇 (𝐺(𝑐))

⨂

𝑇 (𝐺(𝑆))|
|𝑇 (𝐺(𝑐))|

(A.16)

𝑅(𝑐, 𝑆) =
|𝑇 (𝐺(𝑐))

⨂

𝑇 (𝐺(𝑆))|
|𝑇 (𝐺(𝑆))|

(A.17)

𝐺(⋅) means the function to convert a sentence to its corresponding
raph scene, and 𝑇 (⋅) is the function to convert a graph scene to a series
f tuples. ⨂ is similar to the intersection while it allows synonymy
atching.
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