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Texture recognition is one of the most important branches in image research. This paper mainly aims to 

develop a new solution to address texture recognition using a Cellular Neural Network (CellNN). Firstly, 

it proposes an improved model of CellNN by the binary constraints of local receptive fields, and then 

designs a recurrent convolution framework of such a model to generate two types of texture feature 

maps, including state feature maps and output feature maps. In order to obtain low-dimensional fea- 

tures, state feature maps are further compressed by the mapping of rotation-invariant patterns and the 

merging of low-frequency occurrence patterns. By the statistics of joint-distribution patterns, state feature 

maps and output feature maps are fused together to generate the features of single resolution. More- 

over, a multi-resolution feature combination scheme is also designed by the optimization of softmax & 

variance and concatenation of multiple features. Finally, a fully-connected neural network is trained to 

work as a texture recognizer. The experimental comparisons of totally 15 algorithms on five benchmark 

datasets show that, on the dataset whose texture-class quantity is not beyond 30, such as Brodatz, our 

method could always acquire the highest recognition accuracy, outperforming any other compared ones. 

On the big dataset with huge texture-class quantity, such as ALOT, our method could also surpass any 

other non-deep-learning one, such as the state-of-the-art gLBP, only slightly falling behind the best two 

deep-learning ones, FV-Alex and FV-VGGVD. However, in terms of time cost, our method could always 

outperform any deep-learning one in feature extraction stage, and also surpass any compared one except 

original LBP in feature matching. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Like color and contour, texture is also a class of significant vi-

ual characteristics in images. It could often intuitively reflect the

hange of regional pixel colors, and even the change regularity of

olor distributions. In general, different objects often have different

urface texture patterns. For example, tree bark is usually very dif-

erent from grass or brick in terms of texture patterns. In view of

his, image texture is often regarded as a quite useful reference in-

ormation to be depended on in visual object recognition, therefore

t has attracted much extensive concerns of image research fields.

ver the past decades, there have been various texture-based ap-

lications to appear, such as the image classification [1] , image re-

rieval [2] , face recognition [3] , and object detection [4] . 

Texture recognition, as an important branch of image-based

attern recognition problems [5,6] , often contains two necessary

ub-tasks. The first task is the model design for feature extraction,
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nd the other is the classifier training for feature recognition. It is

enerally believed that a good or discriminating feature extraction

odel, once cooperated with a powerful feature classifier, could

ften achieve high recognition accuracy. On the contrary, a bad or

nreliable model, even cooperated by a powerful classifier, would

ften damage recognition performance. A large number of research

ublications have verified that, feature extraction model could be

ne of the most important and most critical influence factors to

urther promote the performance of texture recognition [7] . 

In texture recognition algorithms, feature extraction model is so

ritical that it has attracted much research enthusiasm from all

ver the world. A large number of scholars have been address-

ng this issue in the past decades, and a great deal of research

chievements have been acquired in theory and application fields.

n proposed models, spatial statistics and spectral transform are

ften considered to be the two most prominent and most fre-

uently utilized feature extraction paths. Spatial statistic model

ainly uses the local texture information in a given pixel neighbor

omain. For examples, grey-level co-occurrence matrix [8] , struc-

ural metrics [9] , local binary patterns (LBP) [1,2] and local ternary

https://doi.org/10.1016/j.neucom.2019.12.119
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Fig. 1. Conventional CellNN: (a) 2-dimensional structure, (b) locally-connected field 

and (c) neuron input and output. 
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patterns (LTP) [10] exactly belong to spatial methods. Correspond-

ingly, some classical feature extraction methods, such as Fourier

transform [11,12] , wavelet transform [13] , Gabor transform [14] and

Gaussian derivative models [15] , are usually categorized into a

spectral feature group. Moreover, the Bag-of-Words model, origi-

nating from text analysis, can also be seen in texture recognition,

such as the two in [16,17] . 

Besides the spatial and spectral paths mentioned before, neu-

ral networks are also exhibiting great potentials in texture analy-

sis and recognition. Some famous neural networks, such as Veck-

erNet [18] , Multilayer Neural Networks [19–22] , Deep Neural Net-

work [23] , Deep Autoencoder [24] and Hierarchical Deep Word

Embedding model [25] , are likely to be successfully applied in tex-

ture recognition. In fact, in the past years some neural approaches,

which are essentially based on the ideas of deep networks, have

been developed for texture recognition. For example, we could of-

ten see convolutional neural network (CNN) methods [26,27] , the

deep filter banks in parallel structure [28] and the deep decom-

position of circularly symmetric Gabor-Wavelet (DD-CSGW) [29] .

Recently, Basu et al. even systematically analyzes the deep neural

networks for texture classification in theoretical level [30] . 

Inspired by the successes of deep CNNs [26,27] , and in order

to explore a new path to texture feature representation and recog-

nition, we propose a recurrent convolution framework by the im-

provement to the traditional cellular neural network (CellNN) orig-

inated by Prof. Chua [31] . In our framework, the CellNN is firstly

improved by the local binary constraints to the receptive field of

network. Compared with traditional version, the information cap-

tured by an improved CellNN has changed to the intensity relation-

ships of a central pixel to its receptive-field neighbors, rather than

the original pixel intensities of image. Utilizing the recurrent con-

volutions of improved CellNN on an image, we could always obtain

a group of state feature map and output feature map in each recur-

rence step, and these two types of maps are exactly the important

resources to generate features. Moreover, in dimensionality reduc-

tion, the feature space of state feature maps will be greatly com-

pressed by rotation-invariant pattern mapping and low-frequency

pattern merging. On these compressed maps, optimal map combi-

nation needs to be experimentally determined. Finally, a unified

texture feature vector is generated by the histogram statistic of

joint-distribution patterns on a group of optimized feature maps.

In order to increase the robustness to image scale change, it simul-

taneously extracts multiple feature vectors by different sampling

resolutions: radius and points. These temporary vectors are opti-

mized by ′ softmax ′ and variance, and then they are concatenated

together to form the final feature vector of texture image. More-

over, like most deep networks [25,26] , we also pre-train a fully-

connected neural classifier to execute a recognition via the feature

vectors extracted from texture images. 

The main motivation we propose an improvement of CellNN to

construct a recognition algorithm is explained as follows. CellNN

is usually a recurrent network, consisting of an array of neurons,

and each neuron of CellNN simultaneously receives external in-

puts and feedback inputs from neighbors, so as to accumulate

dynamic states to generate neuron response [32] . The recurrence

steps of CellNN will continue until all neurons converge to the sta-

ble status of {−1 , +1 } after finite-time recurrences. Such a type of

characteristic is so suitable for image processing that CellNN has

been intensively researched and applied, such as in image seg-

mentation [33,34] , image classification [35] and image recognition

[36,37] . Furthermore, the recurrent convolutions of CellNet could

have good potentials in the generation of feature maps. CellNN

could simultaneously generate a state feature map and an out-

put feature map in a recurrence time. However, at present how

to make full use of these maps to extract low-dimensional and ro-

bust features has not yet been paid enough attention to. Because of
his, we consider CellNet as a novel and potential neural-network

olution to the feature extraction of textures. 

In our CellNN-based texture recognition, feature extractor

akes full use of the local-neighbor constraints, recurrent con-

olutions and neuron outputs. Different from deep convolution

eural networks (DCNNs) [30] , in improved CellNN, each neuron

eceives binary external-inputs from neighbors, instead of orig-

nal pixel gray-scale values. It can conveniently implement the

ackward reuse of feature information by receiving feedback from

eceptive-field neurons, rather than only forward reuse. Moreover,

t executes recurrent convolutions to generate two separate types

f feature maps. It usually compresses feature maps by pattern

tatistics, rather than by the pooling operation as in deep net-

orks. Besides, its feature dimensionality is generally independent

f image size, and multiple features could be further optimized

nd fused together to promote the robustness of texture features. 

To briefly sum up, the primary contributions of this paper

nclude three points. Firstly, it designs an improved CellNN with

ocal-neighbor constraints to capture binary texture feature infor-

ation. Secondly, it originally proposes a feature extraction frame-

ork utilizing the state/output feature maps generated by the re-

urrent convolutions of improved CellNN. To the best of my knowl-

dge, no other publication has reported these two ideas by now.

inally, in this paper we have designed a set of schemes for feature

ap compression, fusion and multi-resolution softmax optimiza-

ion, so as to obtain low-dimensional and robust texture feature

epresentation. The biggest characteristic of our CellNet solution

s that, it only depends on lower-dimensional features to acquire

igher accuracy and faster speed than compared deep-learning

lgorithms, especially on the datasets with small texture-class

uantity. 

. Related work 

.1. Cellular Neural Network (CellNN) 

The conventional CellNN, originally proposed by Chua and Yang

31] , is a two-dimensional locally-connected network, and it con-

ains a neuron array of m rows × n columns, see Fig. 1 (a). More-

ver, any central neuron is only connected with its local neighbor
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Fig. 2. LBP modeling scheme with 8-neighbor sampling, ( r = 1 , p = 8 ). 
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eurons, as shown in Fig. 1 (b), and the equivalent block diagram

f a continuous-time neuron is briefly exhibited in Fig. 1 (c). 

In Fig. 1 , every small circle represents a neuron, and 

′ N ( i, j ) ′ 
ndicates the central neuron at the i th row and j th column in neu-

al network. The symbol r is the locally-connected radius of N ( i,

 ), and L r ( i, j ) represents the locally-connected neuron set of N ( i,

 ) with linking radius r . In Fig. 1 (c), x i,j ( t ) and y i,j ( t ) are the state

alue of N ( i, j ) and the output value of N ( i, j ) at the recurrent time

 , respectively. Moreover, the two irrelevant items to time, u i,j and

 i,j are the external input to N ( i, j ) and the fixed input to N ( i, j ),

espectively. Both R x and C are the constant parameters existing in

ellNN. In model, the universal activation function shared by all

ellNN neurons is mathematically expressed as f (.). Besides, sym-

ols A and B are exactly the two convolution kernels correspond-

ng to the feedback inputs ( Y ) and the external inputs ( U ) to neu-

on N ( i, j ), respectively. 

Just as described in [31] , original CellNN is exactly a

ontinuous-time neural network. However, in most image applica-

ions, a discrete model could often be more suitable than contin-

ous ones [33,34] . Correspondingly, the discrete state equation of

ellNN could be mathematically expressed by 

 i, j (t + 1) = x i, j (t) + 

1 

C 

[ 
− 1 

R x 
x i, j (t) + 

∑ 

k,l∈ L i, j (r) 

A k,l y k,l (t) 

+ 

∑ 

k,l∈ L i, j (r) 

B k,l u k,l + I i, j 

] 
(1) 

here the locally-connected neuron set L i, j (r) =
C(k, l) | √ 

(i − k ) 2 + ( j − l) 2 ≤ r 
}

. The constraint conditions for

onvergence [31,38] include: | u i,j | ≤ 1, | x i,j (0)| ≤ 1, constant C > 0

nd R x > 0. Coordinates ′ k, l ′ represent neuron’s row-column loca-

ion, and they are also the element coordinates in two convolution

ernels. Furthermore, the activation function f ( x i,j ( t )) to specially

anipulate neuron output is concretely defined as 

 i, j (t) = f 
(
x i j (t) 

)
= 

1 

2 

(∣∣x i j (t) + 1 

∣∣ −
∣∣x i j (t) − 1 

∣∣)
= 

⎧ ⎨ ⎩ 

1 , x i j (t) ≥ 1 ; 

x i j (t) , | x i j (t) | < 1 ;
−1 , x i j (t) ≤ −1 . 

(2) 

nder certain constraint conditions, after finite recurrences all

eurons could often generate stable output values, i.e , y i, j (t = t ∗) ∈
 +1 , −1 } for any neuron N ( i, j ). At this time, it implies that CellNN

as converged to a stable status [33] . Sometimes, CellNN could

ork as an image filter, projecting the pixel intensity space of

 0 , 1 , . . . , 255 } m ×n to the two-valued pattern space of {−1 , +1 } m ×n .

t is just this characteristic which makes CellNN receive intensive

pplications in image processing fields [34–36] . 

.2. Local binary pattern 

Local binary pattern (LBP) is a classic feature modeling scheme

pecially for image textures. It was firstly proposed by T. Ojala in

002 [39] . Fig. 2 briefly exhibits the basic principle of LBP model-

ng scheme. 

In Fig. 2 , the small black ball represents the central pixel (la-

elled by C) to be encoded by LBP rule, and the gray ball P i ,

here i = 0 , 1 , . . . , 7 , indicates the p th sampling point that evenly

istributes on the circle of radius r exactly around the central

ixel C. 

In general, the LBP code of every pixel in image is often com-

uted by comparing a given central pixel with its p sampling

oints. Eq. (3) shows the computational formula to encode a pixel
y p sampling points. 

BP r,p (i, j) = 

p−1 ∑ 

k =0 

s 
(
g k − g(i, j) 

)
× 2 

k , s (x ) = 

{
1 , x ≥ 0 

0 , x < 0 

(3)

here ( i, j ) represent the coordinates of a central pixel. Meanwhile,

 k and g ( i, j ) represent the equivalent pixel intensity by interpolat-

ng on the p th sampling position and the original intensity of cen-

ral pixel, respectively. Moreover, function s (.) is a binary function

hose response is strictly limited to the range of {0, 1}. 

By LBP encoding, any original image can be transformed into

he LBP code map, in which any code belongs to the pattern

ange of { 0 , 1 , . . . , 2 p − 1 } . For example, a map will contain 256

ifferent LBP pattern codes when p = 8 . Therefore, on LBP map

he distribution histogram of 256 patterns could be generated

y statistics. The histogram may also be regarded as the feature

ector extracted from an original image. However, in order to

educe feature dimensionality, some further map compression

chemes, such as the rotation-invariance pattern mapping, named

iu 2 and initially proposed by Ojala et al. [39] , need often to be

xecuted on an original LBP map before the extraction of feature

istograms begins. From original LBP model, a large number of im-

roved versions have been developed in the past decades, such as

ompleted LBP (CLBP) [40] , DLBP [41,42] , SSLBP [43] , MRELBP [44] ,

RINT [7] , gradient LBP (gLBP) [45] and Median LTP (MLTP) [10] .

hese variants of LBP have already acquired extensive applications

n texture recognition. Specially, Dr. Liu has given a systematic

eview and finished an experimental study on texture recognition

ia original LBP, LBP variants and deep-learning methods in [46] . 

. Proposed feature extraction model 

.1. Basic framework 

In order to obtain discriminating features from original texture

mages, in this section we propose a feature extraction framework

tilizing the CellNN model shown in Fig. 1 . Different from tra-

itional CellNNs [31,34,38] , in this framework we design a local-

onstraint rule for the external inputs to the neurons of receptive

eld. By recurrent convolutions, CellNN produces a series of fea-

ure map pairs, and then these maps are transformed into texture

eature vector by post-processing. This framework, named CellNet,

s briefly shown by Fig. 3 . 

In Fig. 3 , r is a radius of neuron receptive field, identical to the

adius r in Fig. 2 , and p is the quantity of neighbor neurons in the

eceptive field of a central neuron. In order to effectively capture

he intensity relationship of a pixel and its neighbors, in our frame-

ork the local binary constraints, designed specially for neuron’s

xternal inputs, i.e ., the u k,l in Eq. (1) , are defined by 

 k,l = s 
(
g k,l − g(i, j) 

)
= 

{
1 , g k,l − g(i, j) ≥ δ

0 , g k,l − g(i, j) < δ
(4)
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Fig. 3. CellNet, a texture feature extraction framework by the recurrent convolutions of CellNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�  

f

1  

{
 

a  

d  

i  

t  

X  

{  

C  

i  

t  

t  

C

3

 

i  

h  

i  

t  

t  

C  

s  

s  

d  

t  

I  

s  

m

 

t  

a  

f  

fi

�  

w  

j  

s  

o  

m  

n  

b  

e  

t  

(

where function s (.) is identical to Eq. (3) , ′ k, l ′ are still the row-

column coordinates of neuron, and δ is a turnable threshold.

Hereby, it’s easy to see that the external input to neuron N ( i, j )

is no longer original pixel intensity, but the pixel intensity com-

parison of central neuron N ( i, j ) with its receptive-field neighbor

neuron N ( k, l ). 

As we could see, the two dynamic equations presented by

Eqs. (1) and (2) are in scalar forms. They define neuron state recur-

rence and output modulation rules for CellNN, respectively. For the

convenience of description, we need to further rewrite Eqs. (1) and

(2) into the matrix forms as follows: { 

X (t + 1) = X (t) + 

1 
C 

[
− 1 

R x 
X (t) + A � Y (t) + B � U + I 

]
;

Y (t) = f 
(
X (t) 

)
= 

1 
2 

(∣∣X (t) + 1 

∣∣ −
∣∣X (t) − 1 

∣∣); (5)

where symbol ′ �′ represents a standard convolution operation be-

tween a kernel and an image matrix. The two recurrent convo-

lution kernels of CellNN, A and B have a same kernel size of

(2 r + 1) × (2 r + 1) . In our CellNet, X ( t ) and Y ( t ) are named SFM

(State Feature Map) and OFM (Output Feature Map) of neurons at

the recurrence time t , respectively. Moreover, in order to ensure

the finite recurrence of feature extraction framework, the stability

status of CellNN is defined by | y i, j (t ∗) | = 1 for any neuron N ( i, j ) at

time t ∗. It means that only if the output of every neuron reaches

to ′ + 1 ′ or ′ − 1 ′ when t = t ∗, the CellNet framework is deemed to

have gone into its stable status ( i.e ., convergence), therefore it will

stop recurrent convolutions immediately. 

For simplicity and convenience, in our framework we set pa-

rameters C = R x = 1 and I(i, j) = 0 for any neuron. Under local

sampling condition ( r, p ), two convolution kernels could often be

empirically set as 

A = 

( 

1 2 4 

2 

p−1 −2 

p + 1 8 

64 32 16 

) 

and B = 

( 

1 2 4 

2 

p−1 0 8 

64 32 16 

) 

Moreover, from the perspective of local patterns [39] , kernel B

could usually be treated as the position weight matrix of locally-

connected neighbor neurons, therefore the edge element of B is

usually set to 2 p−1 (p = 1 , 2 , . . . ) , shown as above. Kernel A is

designed for the feedback convolutions of CellNet, and it could

be separately optimized by supervised learning. The loss function

used to optimize A is: L (A ) = 

∑ Q 
q =1 

‖ T q − Y q (t∗) ‖ 2 , where Q is the

total number of image samples for learning, T q is the q th objective

OFM and Y q ( t 
∗) is the q th final OFM by the recurrent convolutions

of CellNN. Finally, feedback kernel A is optimized by minimizing

L ( A ). 

The framework presented in Fig. 3 is initialized, and then it

begins recurrent convolutions. At t = 1 it could generate the first

group of feature maps, { X (1), Y (1)}. Recurrently, it will also con-

tinue to generate more map groups, such as { X (2), Y (2)} at t = 2 ,

{ X (3), Y (3)} at t = 3 , ..., and { X ( t ∗), Y ( t ∗)} at t = t ∗, where t ∗ still

indicates the recurrence time of convolutions when CellNN con-

verges to a stable status. Moreover, because X ( t ) and Y ( t ) are gener-

ated by recurrent convolutions, they are likely to fall the real range
 

m × n , too wide to unsuitably extract feature extraction. There-

ore, X ( t ) ∈ � 

m × n needs to be normalized to X(t) ∈ { 0 , 1 , . . . , 2 p −
 } m ×n , and similarly Y ( t ) ∈ � 

m × n needs to be normalized to Y (t) ∈
−1 , 0 , +1 } m ×n . 

For better intuitiveness, in Fig. 4 we present a numerical ex-

mple of feature maps using the image sample ′ 007401. ras ′ of

ataset Outex _ TC _ 0 0 012. Fig. 4 (a) is only a small part of original

mage, and (b) is the state feature map generated by CellNN at

he first recurrence time, t = 1. Fig. 4 (c) is the normalized map of

 (1), in which feature patterns have been normalized to the range

0,...,255}. Fig. 4 (d) represents the output feature map generated by

ellNN convolutions at the first time t = 1 , and (e) is the normal-

zed map of Y (1), in which feature patterns have been normalized

o {-1,0,1}. Correspondingly, Fig. 4 (f), (g) and (h) are the state fea-

ure map, the normalized state map and the output feature map of

ellNN at the final recurrence, t = t ∗ = 9 , respectively. 

.2. Dimensionality compression of feature maps 

In deep networks, feature vectors are often obtained by pool-

ng and serializing maps [47] , therefore they are usually with very

igh dimensionality (sometimes even larger than 10 4 [48] ), and

nevitably accompanied by a large-number requirement for image

raining samples. Considering small-number samples, and in order

o avoid extracting high-dimensional texture feature vectors, in our

ellNet framework we have given up the pooling operation inten-

ively adopted in deep networks, and then switched to a different

olution path. In our method, it is designed to compress pattern

imensionality as much as possible by the rotation-invariant pat-

ern mapping and low-frequency pattern merging on feature maps.

n fact, this solution essentially depends on pattern distribution

tatistics, and it could take full advantage of the high-level infor-

ation implied in texture image pixels. 

In Fig. 3 , the critical pattern mapping from original fea-

ure maps to compressed ones, � : X(t) 	→ ̂

 X (t) , is defined by

 rotation-invariant pattern mapping (named �1 ) and a low-

requency pattern merging (named �2 ) [39,40] . In our CellNet, the

rst mapping operation, �1 is specifically defined as 

1 : X (i, j) 	→ ̂

 X (i, j) = min 

q =0 , 1 ,...,p−1 

{ 

p−1 ∑ 

k =0 

2 

k × u r,p (i, j) 
[
q, k 

]} 

, (6)

here u r,p ( i, j ) is the binary external input to central neuron N ( i,

 ), therefore it could be seen as a binary sequence and totally con-

ists of p bits. Moreover in u r,p ( i, j )[ q, k ], q indicates the shift times

f circular left-shift operation of the p -bit sequence u r,p ( i, j ), and

eanwhile k represents the bit location from right to left in the bi-

ary sequence u r,p ( i, j ). Therefore, u r,p ( i, j )[ q, k ] just indicates the k th

it after executing q -bit circular left shift on original u r,p ( i, j ). For

xample, if u 1 , 8 (i, j) = 11010010 , u 1 , 8 (i, j)[0 , 1] = 1 (corresponding

o the bit underlined in 110100 1 0), and similarly, u 1 , 8 (i, j)[7 , 0] = 1

corresponding to the bit underlined in 0110100 1 ). 
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Fig. 4. The numerical explanation for the recurrent convolutions of CellNet with (r = 1 , p = 8) , on image ′ 007401. ras ′ . 

Fig. 5. The numerical explanation for the feature map compression, on image ′ 007401. ras ′ , dataset: Out ex _ T C _ 00012 . 
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Furthermore, aiming to merge all the low-frequency patterns in

eature maps, the second mapping operation, �2 is specifically ex-

ressed by 

2 : ̂  X (i, j) 	→ 

{̂ X (i, j) , if trans 
[̂ X (i, j ) b 

]
≤ d ;

p + 1 , otherwise . 
(7) 

here trans [ ̂  X (i, j) b ] indicates computing the transition times

etween bit ′ 0 ′ and 

′ 1 ′ in binary ̂ X (i, j) b . For example, if̂ 

 (i, j) = 01110 0 0 0 , then trans [01110 0 0 0] = 2 (the underlined bits

n 01 1 10 0 0 0). Integer d is an adjustable threshold, and p is still

he total number of neighbor neurons ( i.e ., sampling points). 

In essence, the role played by �1 is that it could compress

ne pixel pattern and its p − 1 possible rotation variants into only

ne shared pattern. For example, X (i, j) = 

′ 3 ′ , X (i, j) = 

′ 6 ′ and

(i, j) = 

′ 12 ′ will always be mapped into pattern 

′ 3 ′ by �1 . Simi-

arly, we could see that �2 always keeps the high-frequency pat-

erns of maps unchanged, and merges all low-frequency patterns

nto one. Therefore, the total number of patterns in maps X ( t )

ould be significantly reduced by �1 and �2 at the same time,

ealizing X(t) ∈ { 0 ∼ 2 p − 1 } m ×n 	→ ̂

 X (t) ∈ { 0 ∼ p + 1 } m ×n , where p

s exactly the total number of sampling points. Obviously, it

lways has p + 1 � 2 p for any p ≥ 8, so our method could

reatly compress feature maps from dimensionality 2 p to p + 2

39,45,46] . This map compression makes it possible to obtain low-

imensional features. Our simulation also shows that any state fea-

ure map X ( t ) ∈ {0, ..., 255} m × n could be compressed into ̂ X (t) ∈
 0 , ..., 9 } m ×n , reduced almost by 96%. 

In order to show the idea of dimensionality compression very

ntuitively, a part of numerical results on a real texture image are

lso given in Fig. 5 . In the figure, (a) is the normalized state feature

ap X (1) at t = 1 , the same as Fig. 4 (c), and (b) is the compressed

tate feature map of X (1) by the pattern mapping rules: both �1 

nd �2 . Correspondingly, Fig. 5 (c) and (d) are the normalized state

ap X (9) at the final recurrence t ∗ = 9 and the compressed map

f X (9) also by both �1 and �2 , respectively. 

.3. Joint-distribution feature pattern fusion 

In the CellNet of Fig. 3 , the final feature vector v , is not sep-

rately extracted from compressed 

̂ X (t) and 

̂ Y (t) . In order to
enerate robust features, we compute the joint-distribution fre-

uency of feature patterns on the map group of { ̂  X , ̂  Y } , and then

istribution histogram is taken as the feature vector, v of objective

exture. 

Since ̂ X (t) ∈ { 0 ∼ p + 1 } m ×n and 

̂ Y (t) ∈ {−1 , 0 , +1 } m ×n , we de-

ne ̂ x ∈ { 0 ∼ p + 1 } and 

̂ y ∈ {−1 , 0 , +1 } , where ̂ x and 

̂ y represent

he matrix elements of maps ̂ X and 

̂ Y , respectively. Therefore, the

oint-distribution frequency on two compressed feature maps ̂ X (t)

nd ̂

 Y (t) could be computed by 

( ̂  x , ̂  y ) = 

m ∑ 

i =0 

n ∑ 

j=0 

{̂ X (i, j) == ̂

 x ∩ ̂

 Y (i, j) == ̂

 y 
}
, (8)

here ′ ∩ 

′ indicates a standard logic AND operator, and 

′ == 

′ rep-

esents a comparison logic which judges whether its two sides are

qual. This comparison logic outputs 1 if its two sides are equal,

therwise it outputs 0. 

On the feature map group { ̂  X (t) , ̂  Y (t) } , where t = 1 , 2 , ..., t ∗-

, Eq. (8) could always generate a joint-distribution feature his-

ogram with 3 × (p + 2) bins. However when recurrent time t = t ∗,
ellNN has converged to the output range {−1 , +1 } , therefore the

oint-distribution histogram H xy ( t 
∗), generated from { ̂  X (t ∗) , ̂  Y (t ∗) } ,

nly contains 2 × (p + 2) bins. In our CellNet framework, it is also

ermissible to extract a joint-distribution histogram on any map

roup such as { ̂  X (t 1 ) , ̂  Y (t 2 ) } . The available histograms coming from

ifferent f eature map groups could even be optimally concatenated

ogether to form a longer feature vector for texture recognition. 

. Multi-resolution recognition method 

By the feature extraction framework, CellNet in Fig. 3 , a dis-

ribution feature could be extracted by pattern statistics from a

exture image. In order to promote the scale-invariance of fea-

ure model, inspired by the multi-resolution methods [7,39,40] ,

e further design a multi-resolution optimization & concatenation

cheme to generate more robust and more discriminative features.

uch a scheme and its classier are briefly exhibited in Fig. 6 . The

rimary characteristics and procedures of our recognition profile

re described as follows. 

Firstly, it experimentally chooses multiple sampling parameter

ouples ( r , p ), where k = 1 , 2 , . . . , K, for the local receptive-field
k k 
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Fig. 6. The texture recognition scheme by multi-resolution feature optimization and neural classifier. 
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definition of CellNN, so as to generate k separate feature vectors,

v 1 , v 2 , . . . , v K . Because the further concatenation of feature vectors

will inevitably largen the dimensionality of final texture vector v ∗,

k usually cannot be a big number. In general, that K ∈ {3, 5, 7}

is often appropriate to vector combination [39] . Secondly, an ob-

jective texture image is fed into the CellNN-based feature extrac-

tor ( i.e ., CellNet) shown in Fig. 3 , to separately extract the K joint-

distribution feature vectors (histograms), v 1 , v 2 , . . . , v K , which are

exactly corresponding to the K couples of sampling parameters,

(r 1 , p 1 ) , (r 2 , p 2 ) , . . . , (r K , p K ) , respectively. 

Thirdly, in Fig. 6 , before vector concatenation is done, K feature

vectors are separately optimized by the sof tmax function sof tmax (.),

which is defined by 

˜ v k = sof tmax (v k ) = e v k (q ) 

/
Q ∑ 

q =1 

e v k (q ) , (9)

where q is the component index of vector v k , and Q represents the

dimensionality ( i.e ., vector length) of v k . Moreover, VAR ( v k ) repre-

sents the calculation of the standard variance of vector v k . There-

fore, a K -dimensional variance vector v var can be created by vector-

izing the K variances of K vectors. In our recognition scheme, the

final feature vector of a texture image is generated by concatenat-

ing all the K + 1 vectors together, i.e ., v ∗ = [ v 1 , v 2 , . . . , v K , v v ar ] . In

applications, in order to keep feature dimensionality from growing

too much high, not all vectors will be finally used for concatena-

tion. Both too many or too few vectors could be unsuitable for pro-

moting recognition performance. Therefore, in K choosing it needs

to reach a tradeoff between dimensionality and performance. 

Furthermore, like the usual deep convolutional network in [47] ,

in our scheme we also arrange a fully-connected forward neu-

ral network to work as a feature recognizer. Such a recognizer,

containing input layer, hidden layer and output layer, receives v ∗

and then outputs recognition results. As usual, this neural rec-

ognizer could be trained by some supervised learning algorithms

such as the Levenberg–Marquardt (LM) in [49,50] . On objective tex-

ture dataset, all the feature vectors { v ∗}, separately extracted from

texture samples, are used to train this recognizer, and then the rest

of this dataset are taken for testing the recognition performance of

our method. 

5. Experiments 

The primary contribution of this paper includes the improved

CellNN with local binary constraints, and the feature extraction

and recognition of CellNN-based multi-resolution recurrent convo-

lutions for texture images. In order to evaluate our method and

compare it with others, we have conducted a large number of test

& comparison experiments on some publicly-available benchmark

texture datasets, such as Outex _ TC _ 0 0 012 and Brodatz. 
.1. Experiment platform and datasets 

In Section 5.2 , our method is simulated by Matlab R2011a on

he computer with Pentium Dual-core CPU (3.2 GHz), 4GB RAM

nd 500GB disk, so as to fulfil the low-cost test of our CellNet

ethod as quickly as possible. However in Section 5.3 , our method

eeds to be compared with some other recognition algorithms,

uch as the non-deep MRELBP proposed in [44] and the deep

V-AlexNet proposed in [48] . Considering the fairness of experi-

ental comparisons, we have to turn to a high-performance deep

earning platform for all these compared algorithms. The important

onfigures of this platform include: Tensorflow v1.23, Intel CORE

7 6850K CPU, two GeForce GTX 1080 GPUs, 32GB RAM and 2TB

isk. 

In our experiments, we totally uses five public benchmark

atasets of texture images. The simple profile introductions to

hem are presented in Table 1 , and more image details are listed

s follows. 

(1) Outex_TC_0 0 012 

Outex datasets contain many sub-datasets. In experiments

we only choose the most classic one, Outex _ TC _ 0 0 012

(OTC12). This dataset contains 24 texture classes of three il-

luminations and 9 angles (20 samples per angle). The 480

images of illumination 

′ inca ′ and angle 0, like in some well-

konwn publications such as [46] , are also chosen for training

a neural classifier. 

(2) Brodatz 

There are totally 112 texture images in original Brodatz al-

bum. In our experiments, like in the publication [7] , we only

choose 20 original images of size 640 × 640 to generate ex-

tra texture samples. Their image labels are D1, D4, D16, D19,

D21, D24, D28, D32, D53, D57, D65, D68, D77, D82, D84, D92,

D95, D98, D101 and D102. Eache original image is firstly di-

vided into 16 non-overlapped sub-images, and then every

sub-image is ulteriorly rotated by 10 angles: 0, 15, 30, 45,

60, 75, 90, 105, 130 and 145, so as to acquire more texture

samples. In training, all the image samples of five angles per

class are used to train classifier. 

(3) KTH-TIPS2-b 

KTH-TIPS2-b consists of 11 material texture classes, and each

class contains 4 basic images, 3 imaging poses, 4 illumina-

tions and 9 different imaging scales (totally 432 samples per

class). In experiments, 4 images and their variants (including

2 poses, 3 illuminations and 6 scales) are taken for training. 

(4) UIUC 

UIUC contains 25 texture classes, and every class consists of

40 images with size 640 × 480. In experiments, every orig-

inal image is divided into 16 non-overlapped sub-images of
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Table 1 

The Profile introductions of five benchmark datasets used in experiments. 

Texture datasets Class 

quantity 

Image size Samples 

per class 

Image 

quantity 

Training 

per class 

Testing 

samples 

Ratio of training 

to testing 

Outex_TC_00012 24 128 ×128 360 8640 20 8640 5.56% 

Brodatz 20 160 ×160 160 3200 80 1600 50% 

KTH-TIPS2-b 11 200 ×200 432 4752 144 3168 33.33% 

UIUC 25 160 ×120 640 16,000 320 8000 50% 

ALOT 250 192 ×128 400 100,000 200 50,000 50% 

Fig. 7. The recurrent convolutions on sample ‘0 0 0 0 0 0.ras’ by our CellNN with sampling parameters ( r = 3 , p = 8 ): (a) original texture image, (b) compressed map ̂  X (t = 1) , 

(c) compressed map ̂  X (t ∗ = 5 ), (d) output feature map Y (t = 1) and (e) output feature map Y (t ∗ = 5) . 

Fig. 8. Feature pattern histograms and three joint-distribution fusions: (a) pattern distribution histogram on ̂ X (1) , (b) pattern distribution histogram on ̂ X (5) , (c) pattern 

fusion on { ̂  X (1) , Y (1) } , (d) pattern fusion on { ̂  X (5) , Y (5) } and (e) pattern fusion on { ̂  X (1) , Y (5) } . 
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size 160 × 120 to generate 640 samples. Like the experiment

set in publication [46] , one half of every class are used to

train a feature classifier. 

(5) ALOT 

ALOT is a big dataset, containing 250 classes and 25,0 0 0

original images of size 384 × 256 in total. To obtain more

samples, we divide every image into 4 sub-images of size

192 × 128. In our experiments, one half of expanded dataset

are used to train neural classifier, and the remainder are

taken for testing. 

.2. Performance testing 

In order to visually show processing details of our method, we

ave saved a part of important intermediate results in feature ex-

raction stage, and these results are graphically presented in Fig. 7 .

hey mainly include the state feature maps and the output feature

aps, which are generated by the recurrent convolutions of CellNN

n the random texture image ′ 0 0 0 0 0 0. ras ′ in dataset OTC12. 

On sample ′ 0 0 0 0 0 0. ras ′ , by the binary constraints of Eq. (4) ,

ellNN obtains original input signals from image, and then it be-

ins to run recurrent convolutions in accordance with Eq. (5) . At

 = 1 , the state feature map of CellNN, X(t = 1) is mapped by both

qs. (6) and (7) , so the compressed map 

̂ X (1) ∈ { 0 , . . . , 9 } 128 ×128 is

cquired. Moreover, by Eq. (5) , CellNN releases the output feature

ap Y (1) ∈ {−1 , 0 , +1 } 128 ×128 , and then at t = 5 , CellNN converges

o a stable status, releasing the output feature map Y (t ∗ = 5) ∈
−1 , +1 } 128 ×128 . In the meanwhile, the compressed map 

̂ X (5) ∈
 0 , ..., 9 } 128 ×128 is obtained from original state feature map X (5).

or clearance, in Fig. 7 , the pixel feature patterns achieved by our

ethod have been represented by different color points. 
Fig. 8 (a) and (b) exhibits two feature histograms, separately

xtracted from 

̂ X (1) and 

̂ X (5) . Fig. 8 (c), (d) and (e) are three

oint-distribution histograms, fused by Eq. (8) on { ̂  X (1) , Y (1) } ,
 ̂

 X (5) , Y (5) } and { ̂  X (1) , Y (5) } , respectively. It could be seen that

he feature histograms generated by CellNN are low dimensional,

nly 10 bins in (a) and 20 bins in (e). And in terms of sparsity, the

attern fusion of (e) looks better than the other two, (c) and (d). 

In order to numerically present the influences of sampling

arameters and map fusions on recognition performance, and

etermine a relatively-optimal map fusion scheme, we have tested

everal typical fusions of recurrent map groups by three groups

f different sampling parameters. The recognition accuracy com-

arisons, achieved by our CellNet on five benchmark datasets, are

isted in Table 2 . 

From Table 2 , it could be easy to see the three important con-

lusions: i ) different ( r, p ) couples could have different feature di-

ensionality and recognition performance, ii ) map fusion could

ften raise recognition accuracy, and iii ) the feature map fusion

f { ̂  X (1) , Y (t ∗) } looks better than the other two, { ̂  X (1) , Y (1) } and

 ̂

 X (t ∗) , Y (t ∗) } . 
Although feature map fusion could inevitably increase the di-

ensionality of feature vector, the accuracy with fusions could of-

en be greatly raised. For example, the non-fused feature map 

̂ X (1)

f (1,8) sampling only obtains an accuracy of 68.45% on OTC12,

owever the fused feature map { ̂  X (1) , Y (t ∗) } obtains 84.31%, nearly

5.86% higher than the former. Furthermore, we could also see

hat { ̂  X (1) , Y (t ∗) } acquires an accuracy of 78.29% on dataset UIUC

hen sampling parameters are (3,12), while { ̂  X (t ∗) , Y (t ∗) } and

 ̂

 X (1) , Y (t ∗) } only obtain 67.32% and 65.23%, respectively. It’s obvi-

us that { ̂  X (1) , Y (t ∗) } could greatly outperform both { ̂  X (t ∗) , Y (t ∗) }
nd { ̂  X (1) , Y (t ∗) } under same conditions. One possible explanation
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Table 2 

The experimental comparisons of different sampling parameters and fusions on five datasets. 

Feature fusion groups ( r, p ) Feature length 

of v ∗
OTC12 Brodatz KTH-TIPS2-b UIUC ALOT 

(%) (%) (%) (%) (%) 

{ ̂ X (1) } (1,8) 10 68.45 58.82 52.06 61.22 65.39 

(3,12) 14 67.26 58.05 53.44 61.98 64.02 

(5,16) 18 67.14 58.78 52.82 60.25 64.87 

{ ̂ X (1) } , Y (1) } (1,8) 30 84.31 63.92 56.91 66.17 74.55 

(3,12) 42 83.89 63.64 56.26 67.32 72.82 

(5,16) 54 83.58 63.89 56.88 66.45 73.17 

{ ̂ X (t ∗) } (1,8) 10 66.26 57.73 50.94 59.33 63.03 

(3,12) 14 66.52 56.94 51.28 59.51 62.56 

(5,16) 18 66.55 57.66 51.69 59.05 62.14 

{ ̂ X (t ∗) , Y (t ∗) } (1,8) 20 81.08 62.82 54.32 64.18 71.45 

(3,12) 28 80.26 62.74 53.86 65.23 70.36 

(5,16) 36 80.84 62.61 54.23 64.09 71.82 

{ ̂ X (1) , Y (t ∗) } (1,8) 20 89.53 68.52 62.09 79.56 82.49 

(3,12) 28 88.21 69.78 63.34 78.29 82.96 

(5,16) 36 88.52 68.44 63.01 78.82 81.37 

Table 3 

The performance comparisons of our multi-resolution combination scheme, using the feature map fusion of { ̂  X (1) , Y (t ∗) } . 
Multi-resolution sampling ( r, p ) and 

feature concatenation groups 

Feature length of final v ∗ OTC12 Brodatz KTH-TIPS2-b UIUC ALOT 

(%) (%) (%) (%) (%) 

(1,8) 20 89.53 68.52 62.09 79.56 82.49 

21/softmax 89.97 68.94 63.23 80.29 82.98 

(1,8) + (2,16) 56 92.69 74.36 68.35 86.82 88.54 

58/softmax 92.95 75.28 68.90 87.46 89.12 

(1,8) + (2,16)+(3,24) 108 94.98 86.82 81.74 94.38 92.46 

111/softmax 95.02 87.21 82.01 94.54 92.68 

(1,8) + (2,16)+(3,24)+(3,8) 128 95.17 93.54 84.26 95.25 94.04 

132/softmax 95.35 93.82 84.55 95.48 94.21 

(1,8) + (2,16)+(3,24)+(3,8)+(5,12) 156 98.26 95.31 87.52 96.07 97.18 

161/softmax 98.42 95.56 87.81 96.25 97.33 

(1,8) + (2,16)+(3,24)+(3,8)+(5,12)+(7,16) 192 99.62 95.98 89.35 97.84 98.63 

198/softmax 99.76 96.32 89.49 98.11 98.92 
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is that ̂ X (1) contains the most abundant local pattern features, and

Y ( t ∗) is exactly corresponding to the convergence output of CellNN

convolutions. 

For a further assessment on multi-resolution recognition per-

formance, we have tested six typical multi-resolution feature opti-

mization and concatenation schemes in all. The recognition results,

obtained respectively by six groups of different multi-resolution

schemes, are comparatively exhibited in Table 3 . It could be clear

to see that the feature dimensionality of texture vector v ∗ will

always increase with the total number of concatenated multi-

resolution feature vectors. It is only 10 when only the feature vec-

tor of ′ (r = 1 , p = 8) ′ is chosen, however it gradually reaches 192

when the six feature vectors of different sampling resolutions are

chosen to concatenate together. Moreover, the recognition accuracy

of textures also increases with the total number of multi-resolution

feature vectors. For example, on Brodatz our scheme only obtains

an accuracy of 74.36% when the two-resolution combination, cor-

responding to ′ (1 , 8) + (2 , 16) ′ , is directly concatenated without

a softmax and variance optimization, however it obtains 93.54%

at a four-resolution concatenation, and 95.98% at a six-resolution

concatenation. 

By further analysis, it could also be shown that, although multi-

resolution scheme is efficient in promoting recognition perfor-

mance, the increment obtained by different multi-resolution com-

binations is inhomogeneous. It achieves a big increase of 13.39%

from 

′ (1 , 8) + (2 , 16) ′ to ′ (1 , 8) + (2 , 16) + (3 , 24) ′ on KTH-TIPS2-

b. However, it only obtains 2.52% increase from 

′ (1 , 8) + (2 , 16) +
(3 , 24) ′ to ′ (1 , 8) + (2 , 16) + (3 , 24) + (3 , 8) ′ . In addition to the

above, Table 3 also corroborates that the optimization measure

of feature vectors, i.e ., [ softmax ( v k )), VAR ( v k )], is effective to raise

recognition performance. For example, for two-resolution group
′ (1 , 8) + (2 , 16) ′ , the recognition accuracy, acquired by our scheme
 N  
ithout optimization measure, is only 88.54% on ALOT, however

t increases to 89.12% when the optimization is carried out before

ulti-resolution concatenation. 

.3. Comparisons with other methods 

In order to highlight the advantages of our method, we have

ompared our 6-resolution combination scheme with some deep-

earning ones, whose names have been marked by bold font , such

s the state-of-the-art DD-CSGW in [29] , as well as some non-

eep-learning ones such as gLBP [45] and MLTP [10] . Because

f involving deep-learning networks, our experiments have been

onducted on the GPU platform introduced at the beginning of

ection 5.1 . Any other algorithm except ours are implemented by

ownloading open source codes. Moreover, we have chosen two

mportant comparison metrics to evaluate algorithm performance.

ne is recognition accuracy, and the other is the average execution

ime of each algorithm. 

The recognition accuracy comparisons of 15 methods on five

exture datasets are exhibited in Table 4 . In the comparison ta-

le, ′ CellNet ′ indicates our scheme without [ softmax ( v k ), VAR ( v k )]

ptimization, while ′ CellNet with softmax ′ represents the scheme

ptimized by [ softmax ( v k ), VAR ( v k )]. From this comparison table, it

ould be easy to see three obvious characteristics in our recogni-

ion schemes. Firstly, our two schemes could always extract low-

imensional texture feature vectors. Secondly, our two schemes

ould always achieve the highest accuracy on OTC12, Brodatz, KTH-

IPS2-b and UIUC, but except on ALOT. Finally, the same as in

able 3 , by the optimization of softmax and variance, our CellNet

ethod could obtain a further promotion of recognition accuracy. 

For examples, the dimensionality of feature vectors by Cell-

et is only 192 on all datasets, and it only increases to 198 after
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Table 4 

The experiment comparisons of dimensionality and accuracy, involving 15 methods and five texture datasets. 

Compared methods Length of 

feature vector 

OTC12 Brodatz KTH-TIPS2-b UIUC A LOT 

(%) (%) (%) (%) (%) 

LBP [39] 102 92.14 91.27 62.69 88.42 94.18 

DLBP [42] 14150 91.97 88.37 61.72 83.83 80.52 

CLBP [40] 3552 95.78 92.41 64.18 95.79 96.58 

BRINT [7] 1296 98.13 90.92 66.67 93.38 96.17 

MRELBP [44] 800 99.58 90.98 68.98 94.81 97.29 

SSLBP [43] 2400 99.36 89.62 65.57 95.52 96.66 

gLBP [45] 1260 99.32 92.70 67.21 95.55 97.87 

MLTP [10] 5184 99.48 92.92 68.48 96.97 97.92 

ScatNet(PCA) [52] 596 99.06 84.51 68.92 96.18 98.02 

RandNet(NNC) [53] 2048 52.45 91.23 60.67 57.06 87.34 

FV-AlexNet(SVM) [48] 32768 72.30 95.25 77.90 97.26 99.11 

FV-VGGVD(SVM) [51] 65536 82.30 95.72 88.20 97.72 99.48 

DD-CSGW(SVM) [26] 1575 98.86 94.16 79.66 92.88 95.62 

CellNet 192 99.62 95.98 89.35 97.84 98.63 

CellNet with softmax 198 99.76 96.32 89.49 98.11 98.92 
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oftmax and variance optimization. In the meanwhile, the dimen-

ionality by LBP is 102, but the dimensionality by FV-VGGVD has

ncreased to 65536, far higher than by our schemes. The dimen-

ionality by CellNet is always higher than by LBP, because LBP

efers to p + 2 for very sampling resolution, while CellNet com-

lies with 2 × (p + 2) . Those deep-learning methods, such as FV-

lexNet [48] , extensively adopt pooling operation to compress fea-

ure maps, so the dimensionality by them is usually very high. 

Our CellNet achieves an accuracy of 99.62% on OTC12, outper-

orming all LBP-based methods and deep-learning methods, such

s the MRELBP (99.58%) and the AlexNet (only 72.30%). Similarly,

n Brodatz, KTH-TIPS2-b and UIUC, our method also obtains the

ighest accuracies: 95.98%, 89.35% and 97.84%, respectively. If it

s optimized by softmax and variance, its accuracy could obtain a

urther improvement. On ALOT, the recognition accuracy by Cell-

et is 98.63%, and it increases to 98.92% after optimization, acquir-

ng an increase of 0.31%. However, the highest accuracy is 99.48%,

chieved by FV-VGGVD [51] , and the second highest is 99.11%, ac-

uired by AlexNet [48] . Such a group of comparisons implies that

ur schemes cannot always outperform all compared methods on

LOT, and sometimes they fall behind the best two deep-learning

ethods, FV-VGGVD and AlexNet. 

Our methods are always the best on any texture datasets ex-

ept on ALOT. The possible reasons to explain such a phenomena,

ould be analyzed as follows. Firstly, ALOT consists of 250 texture

lasses and 10 0,0 0 0 images, so some deep methods, even contain-

ng a large number of parameters, such as FV-VGGVD could still

e well trained sufficiently by high-dimensional training features.

econdly, any of the first 4 datasets only contains a small class

uantity of less than 30, far smaller than ALOT’s quantity 250.

hirdly, the dimensionality of feature vectors by our schemes is

ar lower than by FV-VGGVD or FV-AlexNet. Usually, on a large

lass-quantity dataset, it’s often more difficult to simultaneously

aximize inter-class distance and minimize inner-class distance by

ow-dimensional features than by high-dimensional ones. ALOT’s

lass quantity is 250, too big to our schemes. Limited by the

ength of feature vectors, our methods are often hard to pre-

isely recognize the textures with so many classes. As a result, our

ethods cannot usually outperform FV-AlexNet and FV-VGGVD on

LOT. 

Besides recognition accuracy, the average time of each image

s also an important evaluation criterion in texture recognition

30,46] . Time consumption determines the total requirement of

omputation cost, and it also determines whether an algorithm

ould be applied in real-time systems. Considering these factors,

e have also arranged a group of experiments to assess the aver-

ge time per image of each algorithm. 
Table 5 exhibits our experiment results. In this table, the aver-

ge time of every algorithm is separated into two primary parts.

ne is the average time in feature extraction ( T E ), and the other is

he average time in feature matching (T M 

). Training time is usually

oo long, especially in some deep-learning methods such as Scat-

et [52] , FV-VGGVD [51] and DD-CSGW [29] , so it is not consid-

red. In each testing, the start time and end time of each image-

atch operation are recorded by TensorFlow time library so as to

alculate the duration time of each batch, and total duration time

s obtained by adding all image-batch duration time together. Then,

he average execution time of each image is calculated by dividing

otal duration time by image quantity. Finally, the average time of

ach image separately in the two stages, shown in Table 5 , is ob-

ained by repeating each algorithm ten times on testing images. 

From Table 5 , we could see three typical characteristics about

he time cost of compared methods. Firstly, T E is always much

onger than T M 

for any method on a same dataset. For example,

ur CellNet needs 315.5 ms to extract feature vectors on Brodatz,

owever it needs only 30.4 ms to recognize a feature. The former

s about 10 times of the latter. Secondly, on every dataset, the

 E by our two schemes, i.e ., CellNet and CellNet with softmax, is

lways much shorter than by any of the 5 deep-learning meth-

ds such as RandNet [53] , although longer than by any of the 8

on-deep-learning methods such as MLTP and BRINT. For example,

n UIUC CellNet’s T E is 267.1 ms, approximate 18 ms shorter than

V-AlexNet’s 285 ms, and 106 ms longer than MRELBP’s 161 ms.

hirdly, the T M 

by our two methods is always the shortest on

ny dataset, except by LBP. For example, on ALOT CellNet’s T M 

is

5.2 ms, only 7.2 ms longer than LBP’s 28 ms, however 4.8 ms

horter than the least one of deep methods, ScatNet’s 40 ms. Fi-

ally, for either T E and T M 

, the optimization by softmax and vari-

nce could only raise a slight, even negligible time cost. For ex-

mple, on KTH-TIPS2-b, CellNet’s T E and T M 

are 378.6 ms and

19.3 ms, respectively. However, after optimization, T E and T M 

only

ncrease to 383.3 ms and 119.5 ms, respectively. An increase of

bout 4 . 7 ms happens on T E , meanwhile a negligible increase of

.2 ms occurs on T M 

. 

Feature extraction involves usually many stages, such as the

istogram statistics in non-deep methods and the layer-by-layer

onvolutions in deep ones, while feature matching is only a for-

ard matrix computation of classifier. Therefore T E is often much

onger than T M 

. The feature dimensionality generated by deep

earning methods is usually much higher than by our methods. Our

ethods only involve recurrent convolutions, so they need shorter

 E than any compared deep-learning ones, and longer than any

ther compared non-deep ones. Moreover, feature matching time

s mainly dependent of vector dimensionality. In general, the larger
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Table 5 

The average execution time per image of 15 methods on five datasets, in millisecond (ms). 

Compared methods Length of feature OTC12 Brodatz KTH-TIPS2-b UIUC ALOT 

TE TM TE TM TE TM TE TM TE TM 

LBP [39] 102 46 26 58 23 69 98 49 26 54 28 

DLBP [42] 14150 193 122 241 115 290 500 205 125 228 129 

CLBP [40] 3552 76 81 95 72 114 317 81 86 90 79 

BRINT [7] 1296 129 58 161 52 194 203 137 59 152 55 

MRELBP [44] 800 152 46 190 41 228 171 161 466 179 50 

SSLBP [43] 2400 94 69 118 65 141 274 100 74 111 77 

gLBP [45] 1260 95 71 119 66 143 279 101 73 112 74 

MLTP [10] 5184 181 101 226 98 272 386 192 112 214 106 

ScatNet (PCA) [52] 596 296 38 370 35 444 148 314 42 349 40 

RandNet (NNC) [53] 2048 278 64 348 60 417 241 295 67 328 70 

FV-AlexNet (SVM) [48] 32768 269 138 336 128 404 510 285 150 317 148 

FV-VGGVD (SVM) [51] 65536 328 165 410 160 492 628 348 169 387 172 

DD-CSGW (SVM) [29] 1395 364 75 455 77 546 212 386 71 430 81 

CellNet 192 252.4 33.1 315.5 30.4 378.6 119.3 267.1 38.5 297.4 35.2 

CellNet with softmax 198 253.1 33.2 317.8 30.5 383.3 119.5 269.8 38.6 298.7 35.3 
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the dimensionality is, the longer the matching time is. Therefore,

our T M 

is often longer only than LBP’s, but much shorter than any

other’s. 

6. Conclusions 

This paper proposes the improved version of CellNN with lo-

cal binary constraints, and then presents an original feature ex-

traction framework utilizing the recurrent convolutions of CellNN.

In the framework, the state feature maps, generated by recurrent

convolutions, could be efficiently compressed by rotation-invariant

mapping and low-frequency merging. The final feature vectors of

texture images are formed from the joint-distribution pattern his-

tograms of feature maps. Moreover, an optimization scheme of

multi-resolution feature concatenation is put to use so as to pro-

mote the robustness of texture features. In our method, a fully-

connected neural network is also trained to work as a recog-

nizer. The experiment results on five texture datasets show that

our method could always effectively extract low-dimensional tex-

ture features. In terms of recognition accuracy, it could always

surpass any compared method, including state-of-the-art gLBP on

the small datasets with small texture-class quantity, although it

often falls slightly behind some deep-learning ones such as FV-

lexNet on the ALOT, a big dataset with texture class quantity be-

yond 200. Moreover, as for time performance, in feature extraction

our method could often surpass any deep-learning algorithm, al-

though it often falls behind any other non-deep algorithm on ev-

ery dataset. Meanwhile, in terms of matching time, our method

could often outperform any other compared one except LBP. Fur-

thermore, it could even achieve a further promotion of accuracy

by the optimization of softmax and variance. 
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