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Figure 1: Illustration of the GaussianShopVR system. (a) Users can quickly obtain photorealistic 3D assets via 3D Gaussian
Splatting reconstruction as the basis for 3D authoring. (b1) Users can precisely select points to support various subsequent
editing tasks, such as object splitting at any level of detail, content removal, inpainting, and (b2) color adjusting. (c1) Users
can intuitively draw point clouds in VR to guide and control AI optimization to achieve complex tasks like (c2) generation
and 3D inpainting. Integrating intuitive VR interactions, versatile editing functionalities, photorealistic representations, and
accessible digital assets, GaussianShopVR introduces a novel approach to immersive 3D content authoring.
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Abstract
We present GaussianShopVR, a VR-based authoring system for
controllable and fine-grained editing of 3D Gaussian Splatting
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(3DGS). Although 3DGS has gained popularity for its capability
to quickly create digital replicas of real-life scenes and its com-
patibility with existing rendering pipelines, current methods of-
ten struggle with detailed 3D editing due to cumbersome target
area selection and inadequate spatial control on AI-driven edit-
ing. GaussianShopVR addresses these challenges by harnessing
intuitive VR interactions for efficient point selection and draw-
ing. We further enhance editing methods to support interactive
creative tasks, including precise object splitting, real-time color
adjustment, and controllable object generation from drawn points.
We evaluate GaussianShopVR through three user studies focusing
on point selection efficiency (𝑁=18), controllable 3D generation
(𝑁=20), and overall usability (𝑁=10). The findings suggest that
GaussianShopVR provides an immersive, flexible, and controllable
approach to 3DGS-based content creation in VR. Our code is avail-
able at https://github.com/CISLab-HKUST/GaussianShopVR.

CCS Concepts
• Human-centered computing → Interactive systems and
tools; • Computing methodologies → Virtual reality; Point-
based models.
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1 Introduction
3D digital content has been ubiquitous in spatial design, anima-
tion, games, and virtual reality (VR) applications. However, tradi-
tional mesh-based 3D asset creation remains time-consuming and
labor-intensive, often requiring geometry modeling, sculpting, UV
mapping, and various postprocessing steps. This calls for more effi-
cient and intuitive 3D authoring approaches that can significantly
improve the efficiency and quality of 3D asset creation.

3D Gaussian Splatting (3DGS) [27] is regarded as a potential
representation for efficient 3D asset creation [62]. It has emerged
as a representation suitable for reconstructing 3D content from
a collection of images using differentiable rendering techniques.
Compared with using digital creation tools [5, 54] for mesh-based
modeling, 3DGS can create photorealistic digital replicas of real-
life scenes in minutes, which significantly reduces modeling time.
Furthermore, it is compatible with existing graphics pipelines and
supports real-time rendering, which has significant advantages over
other representations like NeRF [38] and DeepSDF [41]. 3DGS is
differentiable and can be easily optimized by neural networks, sup-
porting various AI-driven editing tasks, including style transfer [8]
and object generation [29, 52]. These advantages offer 3DGS great
potential for a new and efficient 3D authoring representation.

Despite these advantages of 3DGS, there is a lack of support for
fine-grained and controllable editing of 3DGS (shown in Table 1). In

a typical creative editing process, creators often need to accurately
select target areas and intuitively modify the content. This poses
two key challenges of 3D authoring using the 3DGS representation:
difficulties in fine-grained selection and inadequate control during
AI-driven editing.

First, existing methods for 3DGS editing [8, 10, 23, 33, 39, 43, 57,
65] struggle with efficiently selecting regions, as 3DGS is a special
form of point cloud representation (see Figure 2). Some systems [5,
43, 54] use 2D user interfaces to select points from screen space via
raycasting techniques. However, each raycasting operation selects
the entire frustum behind the screen. Consequently, users must
frequently change their viewpoints and repeatedly select or deselect
point clouds, making the process both cumbersome and imprecise.
Other 3DGS editing methods [8, 10, 23, 33, 39, 65] lift multiview
2D masks to indicate 3D target areas. The multiview masks can be
obtained by manual annotation with image editing software, which
is highly time-consuming. AI-based segmentation models [28] can
automatically generate masks under different views, but can only
work at an object level and may encounter 3D inconsistency caused
by occlusions and the performance of AI models.

Second, existing AI-driven editing methods [8, 52, 53, 66] based
on text and image prompts fail to have enough control over the
editing process, especially in shape control. Text or image prompts
used in prior work [8, 52] are inadequate for extracting the nec-
essary 3D information to guide optimization. Unlike 2D editing,
which benefits from shape constraints like sketching [70] or seman-
tic maps [42], 3D editing lacks efficient prompts to input 3D priors
into neural networks, leading to issues like 3D inconsistency [44, 52]
and depth misestimation [50].

To tackle these two challenges, we propose GaussianShopVR, a
system that leverages VR user interfaces for 3DGS authoring. Prior
research [15, 31, 60, 71] has demonstrated the intuitive nature of 3D
interaction in VR for point selection and manipulation. We hypoth-
esize that VR interfaces can significantly help identify editing areas
by selecting 3DGS points and drawing new points. Furthermore,
selected or drawn 3D content can provide spatial information and
constraints as input for generative AI models. To support general
editing tasks, we implemented a hierarchical object structure in
GaussianShopVR tailored for 3DGS while preserving the differen-
tiability of the entire scene for AI-based optimization. Based on
efficient target area identification, we enhance some editing tools
and integrate them into GaussianShopVR to support a wide range
of creative tasks, including object splitting, object manipulation,
object generation, and color adjustment.

We conducted user studies to evaluate the efficiency of selecting
3DGS points using GaussianShopVR, as well as the controllability of
AI methods enabled by the identification of 3D target areas. Another
user study was conducted to further explore how GaussianShopVR
facilitates 3D authoring using 3DGS as a creativemedium. The study
results show that GaussianShopVR is an effective 3D authoring tool
and can support a wide range of content creation and spatial design.

In summary, this paper makes the following contributions:

• Wedeveloped GaussianShopVR, a 3D authoring system in VR
for controllable and fine-grained 3DGS editing. To the best
of our knowledge, GaussianShopVR is the first VR system

https://github.com/CISLab-HKUST/GaussianShopVR
https://doi.org/10.1145/3746059.3747803
https://doi.org/10.1145/3746059.3747803
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Table 1: Comparison of 3DGS editing systems. GaussianShopVR supports point-level editing of 3DGS through both manual
and AI-driven methods. It requires no cumbersome preprocessing and uniquely provides immersive spatial control, enabling
precise and flexible AI-based operations.

System w/o Preprocessing Editable Manual Editing AI Editing Immersive Spatial Control for AI

GaussianEditor [8] ✓ Object ✗ ✓ ✗ ✗

VR-GS [23] ✗ Object ✓ ✗ ✓ ✗

Dreamcrafter [55] ✓ Object ✓ ✓ ✓ ✗

SuperSplat [43] ✓ Point ✓ ✗ ✗ ✗

Ours ✓ Point ✓ ✓ ✓ ✓

to enable detailed, point-level editing on 3DGS, benefiting
from the intuitive spatial interactions in VR.

• We enhanced multiple tools tailored for GaussianShopVR
to facilitate interactive 3D authoring. These editing tools
include both manual and AI-driven approaches, such as ef-
ficient object splitting, controllable object generation, 3D
inpainting, color adjustment, and scene composition.

• We conducted three user studies to evaluate the efficiency
of 3DGS selection, the controllability of AI generation, and
how GaussianShopVR facilitates 3D authoring. The results
show that GaussianShopVR offers an intuitive, controllable,
and versatile experience of 3DGS-based content creation.

2 Related Work
2.1 VR/AR Interfaces for 3D Authoring
Developing creative tools for immersive content creation is a vi-
brant area of research. Devices such as head-mounted displays
(HMDs), smart glasses, and LiDAR-equipped tablets offer distinct
advantages for 3D content creation, enabling direct six-degree-of-
freedom interactions for highly arbitrary editing operations. VR
painting can provide users with an immersive feeling to stimulate
the desire to create and can be regarded as a new artmedium [24, 34].
CASSIE [68] leverages freehand mid-air sketching and devises a
novel 3D optimization framework to create connected curve net-
work armatures. Yu et al. [67] proposed a method to transform un-
structured 3D sketches into piecewise smooth surfaces that preserve
the geometric features of sketches and thus convert 3D sketching
to 3D objects. Some other works leverage VR/AR devices to facil-
itate environmental design [16, 58] and character animation [30].
SceneCtrl [69] allows the user to interactively edit the real scene
sensed by HoloLens, such that the reality can be adapted to suit
virtuality. PointShopAR [59] uses tablets to capture point clouds
in augmented reality to support environmental design prototyp-
ing. Dreamcrater [55] enables object-level generation and editing
of 3DGS, and allows users to directly manipulate 3DGS objects
within a VR environment for 3D scene authoring. VR-GS and VR-
DoH [23, 36] add physics-based simulations to interact with 3DGS
objects in VR and thus are capable of modifying their posture. These
works show great potential for using VR/AR interfaces to facilitate
3D authoring.

2.2 Generative AI for 3D Authoring
The difficulty in acquiring 3D assets troubles content creators, and
some research tends to leverage generative AI methods to quickly
obtain 3D assets. There are two major frameworks: a mesh-based
framework and a differentiable representation-based framework.

Mesh-based methods apply AI models to different traditional
sections of computer graphics, such as geometry [37, 47, 56], tex-
ture [13, 19, 46, 63, 70], and image-based rendering [40, 49].

Differentiable representation-based tends to use implicit rep-
resentations optimized by deep learning. DeepSDF [41], Neural
Radiance Fields (NeRF) [38], 3DGS [27]. show great potentials on
object generation [14, 29, 52], scene generation [11, 50] and dynamic
content creation [35, 61, 64].

Although recent research has focused on leveraging generative
AI to improve 3D generation quality via text or image prompts, few
works have focused on effective control over the generation pro-
cess to obtain specific, desired 3D assets. DreamSketch [32] utilizes
sketches as guidance but often misestimates object positions and
depth, necessitating manual adjustments. Coin3D [14] introduces
geometric primitives as constraints for generative AI models; how-
ever, this approach primarily controls coarse-level shapes and lacks
the ability to manage fine-grained details. Consequently, achieving
controllable, precise, and fine-grained 3D editing and generation
remains an open challenge.

2.3 3D Gaussian Splatting Editing
Previous works, such as PointShop3D [73], have focused on editing
scanned point data represented as surfels, which are inherently
constrained to surfaces. In contrast, 3DGS employs volumetric point
representations that extend beyond surfaces into the volume. Due
to its volumetric, point cloud-like nature, explicitly editing 3DGS
points via traditional 2D interfaces is challenging, significantly
limiting their practical application in 3D authoring workflows.

Some methods [8, 23, 28, 33, 39, 57, 72] focus on using 2D images
to guide the editing of 3DGS. These 2D images can be obtained
via generative AI or manual creation. GaussianEditor [8] uses mul-
tiview semantic masks generated by SAM [28] to trace editing
areas, while SAM generates 3D inconsistent masks and thus leads
to inaccurate 3D editing areas. TIP-Editor [72] uses user-placed 3D
bounding boxes, text prompts, and image prompts to edit 3DGS.
VR-GS [23], InFusion [33], RefFusion [39], and GScream [57] also
rely on user-provided multiview masks to remove objects and de-
sign models for inpainting. All of these methods need to use 3D
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Figure 2: Approaches to 3DGSpoint selecting. (a) In 2D image editing, designers effortlessly select target regions using an intuitive
brush-based pixel selection tool. However, accurately selecting target splats in 3D space for 3D Gaussian Splatting editing
is quite challenging. (b) Automated segmentation based on SAM is common for 3DGS editing tools (e.g., GaussianEditor [8])
but often struggles with complex scenes. (c) Desktop software (e.g., SuperSplat [43]) leverages raycasting-based selection that
frequently leads to misselection due to depth ambiguity. (d) With our approach, users can interactively “touch” and select
points in 3D space via a VR controller, which is more efficient and precise.

information given outside the system, and it is hard to edit arbi-
trary areas. Moreover, these methods relying on multiview training
images only support one-time editing, where once 3DGS scenes
are modified, the training images can not be used as guidance for
optimization anymore.

Other approaches [8, 66] utilize Score Distillation Sampling (SDS)
to enable editing on 3DGS. These methods leverage 3D priors dis-
tilled from pretrained 2D diffusion models to guide the optimization
of 3DGS models. Despite their promising results, SDS-based ap-
proaches typically encounter several limitations, such as prolonged
training durations, inconsistencies in generated 3D geometry, and
overly high contrast or unnatural appearances.

Recent work [21, 23, 36] has explored interactive modification
of 3DGS with spatial input. VR-GS [23] employs object segmenta-
tion and image-based inpainting on training images to reconstruct
scenes with multiple objects. It visualizes the scenes in VR and
incorporates physics-based simulations to enhance interactivity.
VR-DoH [36] facilitates direct interaction with 3DGS points in a VR
environment, treating them akin to virtual clay. GSDeformer [21]
leverages deformation cages tomanipulate the pose of 3DGS objects.
Although these methods offer intuitive ways to interact with 3DGS,
they primarily support modifications at the object level, lacking the
ability to precisely edit fine details and intricate structures.

3 System Design
3.1 Preliminaries
3D Gaussian splatting. Gaussian Splatting [27] employs a collec-
tion of point-like anisotropic 3D splats. Specifically, each Gaussian
is defined by a center 𝒙 ∈ R3, a scaling factor 𝒔 ∈ R3, and a rotation
quaternion 𝒒 ∈ R4. Additionally, an opacity value 𝛼 ∈ R and a
color feature 𝒄 ∈ R𝐶 for spherical harmonics (SH) coefficients are

maintained for rendering, where spherical harmonics can be used
to model view-dependent effects. These parameters can be collec-
tively denoted by Θ, with Θ𝑖 = {𝒙𝑖 , 𝒔𝑖 , 𝒒𝑖 , 𝛼𝑖 , 𝒄𝑖 } representing the
parameters for the 𝑖-th Gaussian. Rendering of the 3D Gaussians
involves projecting them onto the image plane as 2D Gaussians
and performing alpha composition for each pixel in front-to-back
depth order, thereby determining the final color. Each pixel in the
rasterized image can be calculated by the following formula:

𝐶 =
∑︁

𝑖∈{1..𝑁 }
𝒄 𝒊𝜎𝑖

𝑗=1∏
𝑖−1

(
1 − 𝜎 𝑗

)
, (1)

𝜎𝑖 = 𝛼𝑖𝑒
− 1

2 (Δ𝒙 )
𝑇 Σ−1

𝑖 (Δ𝒙 ) , (2)

Σ𝑖 = 𝐽𝑊𝑅𝑖𝑆𝑖𝑆
𝑇
𝑖 𝑅

𝑇
𝑖 𝑊

𝑇 𝐽𝑇 , (3)
where 𝒄 𝒊 is the color obtained from projected 2D Gaussian, 𝑗 is
the index of the Gaussian points in front of 𝑖 according to their
distances to the optical center in ascending order, 𝑁 is the number
of Gaussians, Δ𝒙 is the position offset to the center, Σ𝑖 is the pro-
jected covariance to image space made by a viewing transformation
denoted by𝑊 and the Jacobian 𝐽 of the affine approximation of the
projective transformation.

3DGS editing with diffusion models. Diffusion models are
proposed to generate images with text input from users. Recent
research [20, 44, 53] has seen the potential of applying 2D diffusion
processes to the 3D realm, as the diffusion models are trained with
massive data and thus become 3D-aware. There are two main ways
to leverage prior in 2D diffusion models to edit 3DGS.

The first is to construct a collection of multiview edited images
𝐼 generated by diffusion models based on the original renderings
𝐼 . Then, these images and their corresponding rendering camera
parameters are used to optimize the 3D model Θ.
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The second is to utilize score distillation sampling (SDS) [44]
to optimize a radiance field by distilling the priors from a Text-
to-Image (T2I) diffusion model for 3D generation. The pre-trained
diffusion model Φ is used to predict the added noise given a noised
image 𝐼𝑡 and its text condition 𝑦.

∇ΘL𝑆𝐷𝑆 (Φ, 𝐼 = 𝑓 (Θ)) = E𝜖,𝑡
[
𝑤 (𝑡)

(
𝜖Φ

(
𝐼𝑡 ;𝑦, 𝑡

)
− 𝜖

) 𝜕𝐼

𝜕Θ

]
, (4)

where 𝜖 is the added noise, 𝑓 (·) is the differentiable image formation
process, and 𝑤 (𝑡) is a predefined weighting function derived at
timestep 𝑡 .

3.2 Design Considerations
To achieve flexible and controllable editing with 3DGS, it is crucial
to address two primary interaction challenges regarding the rep-
resentation and optimization of 3DGS. First, users must be able to
efficiently identify the specific areas they wish to edit. Second, they
should have effective control over the AI-driven editing process.

Efficient 3D target area specification. 3DGS presents unique
challenges for target area selection due to its point cloud-like repre-
sentation. As illustrated in Figure 2, traditional 2D interfaces rely on
raycasting, projecting cylindrical selections from screen space into
the 3D scene, which requires users to repeatedly adjust viewpoints
and refine selections, resulting in a tedious and time-consuming
process. AI-based segmentation models [7, 10, 65], which project
2D masks onto 3D areas, offer an automated solution but face signif-
icant limitations. These models are either restricted to object-level
segmentation, lacking the granularity required for fine-grained
edits, or fail to handle intricate geometric structures, producing
unreliable and inconsistent results. This lack of fine-grained control
limits users’ ability to edit with precision and flexibility, hindering
their capacity to realize diverse creative ideas.

Controllable AI-driven editing.Most current methods rely on
text or image prompts to control the editing of 3D Gaussian Splat-
ting. However, such inputs fail to convey the spatial information
necessary for precise control. Unlike 2D editing, which benefits
from a variety of constraints such as sketches [70] or semantic
maps [42], 3D editing lacks similar prompt types that can incorpo-
rate 3D priors into neural networks to control the generation or
editing process to get desired results. For instance, in 2D, a user
can sketch the outline of a hat to generate the desired shape, while
there is no equivalent prompt in the 3D domain to guide AI-driven
editing due to the lack of a spatial user interface.

4 The GaussianShopVR System
Our system requires two components: a PC-powered VR device
as the frontend and a GPU server as the backend. The frontend
PC does not require significant computing power, as it is primarily
used for basic manipulation and rendering. The backend server
needs to handle complex editing functions. In our implementation,
the frontend uses a Meta Quest 3 headset and a PC with an NVIDIA
4090 graphics card, and the backend uses a server equipped with an
NVIDIA 4090 graphics card and an Intel Xeon Platinum 8370C CPU.
We use Unity [54] to create the VR environment and user interfaces.
The VR interface for rendering Gaussian Splatting is built upon
an open-source Unity project [12], which serves as the foundation

for our implementation. All operations in VR are synchronized
with the server, ensuring that the scene remains editable by AI
models. Rendering speed is mainly influenced by the number of
3DGS points within the view frustum. At a resolution of 2064 ×
2208 per eye, our system runs at approximately 70 FPS with 0.8
million points and 55 FPS with 2.2 million points.

Figure 3: Illustration of our system architecture. User inter-
actions in VR are transmitted to the backend server, where
they are synchronized and processed for AI-driven editing.

4.1 Efficient 3D Target Area Specification
Using VR controllers in GaussianShopVR, users can easily select
3DGS points and draw point clouds, which are challenging tasks in
conventional 2D interfaces.

Point cloud selection. GaussianShopVR facilitates efficient
selection of 3DGS points through an intuitive, VR-based interaction
method utilizing a semi-transparent spherical cursor attached to
the VR controller. Gaussian splat centers are distinctly visualized as
discrete points, and points encompassed by the sphere are visually
highlighted to indicate their selection. To support precise selection
of areas of any size, we implemented manual radius adjustment
for the spherical cursor. This allows users to interactively change
the selection granularity, providing intuitive control tailored to
their editing needs. Additionally, users can smoothly extend or
refine selections by moving the VR controller through the 3D space,
enabling efficient targeting of specific regions.

Point cloud drawing. Creating point clouds, a task traditionally
cumbersome and unintuitive with 2D interfaces, becomes signifi-
cantly more natural and immersive within a 3D virtual environment
using VR controllers. In GaussianShopVR, users intuitively create
point clouds by directly drawing in three-dimensional space us-
ing a spherical brush attached to the VR controller. This spherical
brush can be dynamically scaled, allowing users to adjust the brush
size to precisely match the desired level of detail. Furthermore,
GaussianShopVR provides functionality to assign custom colors
to the drawn point clouds, enabling users to visually distinguish
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Figure 4: Illustration of obtaining 3D-consistent images. A 2D
mask is generated corresponding to the target area and a spe-
cific viewpoint. Renderings from various viewpoints, along
with their corresponding masks, are input into AI models
to get edited images. Users can get a collection of multiview
edited images as guidance for later 3DGS optimization.

and categorize different objects or regions intuitively during the
authoring process.

4.2 Controllable AI-Driven Editing
Users interact with the VR interface to select or draw points that
define the areas to be edited. The selected or drawn point clouds
can serve as constraints that guide AI models during the editing
process. GaussianShopVR can leverage specified areas to obtain
3D-consistent edited 2D renderings for later optimization, and can
also leverage specified areas for regularization during optimization.

Specified points for 3D-consistent image editing. Existing
methods [8, 23, 33, 39, 57] process training images in advance to
guide 3DGS optimization, which can not be used for iterative edit-
ing. We design a method illustrated in Figure 4 to enhance the
methods leveraging AI-edited 2D renderings to optimize 3DGS.
Our method can generate 3D-consistent masks for 2D image edit-
ing rather than let users create segmentation masks manually. Users
first use VR user interfaces to select or draw some points. Then,
users should determine viewpoints to obtain 2D renderings. Under
a given viewpoint, the selected points are projected into screen
space to create a mask. Renderings from various viewpoints, along
with their corresponding masks, are then input into AI models,
such as MVInpainter [6] and Wan2.1-VACE [25], to generate edited
images. Users can obtain guided results from multiple perspectives.
Once users select their preferred images, the corresponding colors
are projected back onto the specified points. The set of selected
images can further be used to optimize the chosen 3DGS points.

Specified points as constraints for optimization. Users spec-
ify the editing area by drawing and selecting points, which are
then copied into 𝑃 . These points form a coarse representation of
the desired shape and can naturally become the initial constraint.
However, during the optimization, 3DGS point clouds will be up-
dated and densified due to guidance, which can result in the shape
and appearance of 3DGS objects being far from what users expect.

To ensure the optimized points adhere to the original shape and
appearance, we introduce multiple regularization terms:

𝐿shape =
𝜆𝑠1
|𝑃 |

∑︁
𝑝𝑖 ∈𝑃

exp
(
𝜆𝑠2




𝒙𝑝𝑖 − 𝒙𝑝𝑖




),
𝐿color =

𝜆𝑐

|𝑃 |
∑︁
𝑝𝑖 ∈𝑃




𝒄𝑝𝑖 − 𝒄𝑝𝑖




,
𝐿scale =

𝜆𝑠

|𝑃 |
∑︁
𝑝𝑖 ∈𝑃




𝒔𝑝𝑖 − 𝒔𝑝𝑖




,
(5)

where 𝜆𝑠1 and 𝜆𝑠2 are hyperparameters that control the degree
of shape limitation, 𝜆𝑐 for color control, 𝜆𝑠 for scaling control, 𝑃
denotes the set of optimizing 3DGS points, and each 𝑝𝑖 ∈ 𝑃 is
associated with its corresponding initial point 𝑝𝑖 ∈ 𝑃 from which
it originated during densification. These regularization terms can
be combined with other loss functions—such as the SDS loss for
generative tasks or L1 loss for image-guided editing—to encourage
the attributes of the optimized points to remain consistent with
those of the initial user-specified points. The optimization diagram
is shown in Algorithm 1.

ALGORITHM 1: Proposed 3DGS Optimization Pipeline
Input: Set of all 3DGS points 𝑃all; selected points to

optimize 𝑃 ⊂ 𝑃all; target images or text prompt;
original loss weight𝑤ori; regularization
hyperparameters 𝜆∗

Copy 𝑃 to 𝑃 as user-specified reference;
for 𝑡 = 1 to 𝑇 do

Render 2D images I from 𝑃all;
if optimizing with target images then

Compute guidance loss 𝐿ori = 𝐿1 = ∥I − Itarget∥1;
end
else if optimizing with SDS then

Compute guidance loss 𝐿ori = 𝐿SDS using text
prompt;

end
Compute regularization terms 𝐿shape, 𝐿color, 𝐿scale;
Compute total loss:

𝐿total = 𝑤ori𝐿ori + 𝐿shape + 𝐿color + 𝐿scale;
Update 𝑃 by descending ∇𝐿total;
Densify and prune 𝑃 as needed;

end
Output: Optimized 3DGS points 𝑃

4.3 Object Hierarchy
Object hierarchies in 3D software such as Blender and Unity [5, 54]
facilitate the management of complex scenes by enabling grouped
transformations, cleaner organization, and more intuitive control
over related objects. We design the hierarchy system in Gaussian-
ShopVR as shown in Figure 5. After manually splitting, the new
object becomes a sibling node of the split object, and users can
manually adjust the hierarchy relationship using a 2D panel. Each
object has its own transformation, including translation, rotation,
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and scaling. The 3DGS of the parent object can be obtained by:
Θ𝑝 = ∪{𝑇𝑐1 (Θ𝑐1),𝑇𝑐2 (Θ𝑐2), ...,𝑇𝑐𝑛 (Θ𝑐𝑛)}, where 𝑐1, 𝑐2, ...𝑐𝑛 are the
children of the parent object, and 𝑇 is the transformation of each
object. Each band of SH coefficients is rotated using matrices intro-
duced by Ivanic and Ruedenberg [22]. Since the transformations
are differentiable, the gradients calculated on the ancestors can be
backpropagated to the target points of leaf objects.

With this architecture, GaussianShopVR supports more sophisti-
cated 3D authoring tasks beyond simple object placement. More-
over, the hierarchical structure provides valuable contextual in-
formation for AI models, enabling users to define editing context
for target objects and ensuring a seamless integration into their
surrounding environment.

Figure 5: Illustration of the object hierarchy. Only Leaf ob-
jects contain real 3DGS points, while container objects con-
tain the view of all children after transformation. Users can
select a container object as the context for AI-driven editing.

4.4 Supported Editing Tasks
Our system offers a range of editing tools for 3DGS models, most
of which are based on user-specified areas.

4.4.1 Object Splitting. While 3D Gaussian Splatting effectively
reconstructs entire scenes from image collections, these reconstruc-
tions are typically tangled and inseparable. Users need to split the
desired objects from the reconstructed scenes for further authoring.
GaussianShopVR addresses this by enabling users to split individual
objects after precise area selection. The split object will become the
sibling of the existing one in the hierarchy system.

4.4.2 Object Manipulation. To support authoring tasks such as
scene composition, users need functions for translating, rotating,
and scaling objects. In GaussianShopVR, users can intuitively and
immersively manipulate 3DGS objects. After selecting an object
either by clicking on it in the hierarchy panel or grabbing it directly
in the 3D space, they can translate, rotate, and scale it. To translate,
users hold the grip button and move the controller to reposition the
object. Rotation is performed by gripping the controllers and twist-
ing their hands, while scaling is achieved by moving the controllers
closer together or farther apart while holding the grip buttons,
dynamically resizing the objects.

4.4.3 Color Adjustment. Users also need to adjust the appearance
of 3DGS objects while preserving photorealism. The appearance
of 3DGS points is obtained from the reconstruction modeling by
SH coefficients. It is hard to edit manually due to the point-like

representation and SH storage [18, 45]. Building on efficient 3DGS
point selection, we developed a color adjustment interface using
mapping curves for the RGB channels, similar to the curve tool in
PhotoShop [1]. This interface enables users to modify the colors of
selected points, supporting a wide range of creative applications,
as shown in Figure 12.

Specifically, we extract the zero-order spherical harmonic coeffi-
cients from all selected 3DGS points and convert them into RGB
values. For each RGB channel, we apply a mapping curve, which
is initially set as the identity function, to transform the original
values into the final results. These curves allow users to adjust the
colors of 3DGS points while preserving fine details and texture.

4.4.4 Generation. Object generation enables users to efficiently
and intuitively add new elements directly into existing scenes,
streamlining workflow, facilitating rapid prototyping, and enhanc-
ing creative flexibility. In GaussianShopVR, users first draw point
clouds to represent coarse shapes using VR controllers. Users can
pick different colors to draw point clouds. After giving a text prompt,
GaussianShopVR applies the SDS loss (Equation (4)) and the pro-
posed regularization loss (Equation (5)) to optimize the drawn
points. Figure 6 shows the results and the generation process.

Figure 6: Examples of processes of object generation starting
from drawn point clouds.

4.4.5 Inpainting. Splitting 3DGS points from an object often results
in a visible hole at the intersection, which substantially degrades
visual quality. Users can address this problem either by manual
editing or AI-driven editing in GaussianShopVR. Figure 7 shows
the results of manual inpainting and AI-driven inpainting.

For manual inpainting (shown on the left of Figure 7), users can
select a group of nearby points as a patch and copy it to desired
locations. This approach is similar to editing with the clone stamp
tool of Photoshop [1]. It is particularly effective for surfaces with
regular texture patterns.

For AI-driven inpainting, we use the method described in Sec-
tion 4.2. As shown on the right of Figure 7, users first draw some
points to fill the hole and then use the method described in Sec-
tion 4.2 to collect edited images from different viewpoints.
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Manual Inpainting AI-Driven Inpainting

a1 a2

c2 d2

b2

d1

b1

c1

Figure 7: Examples of manual inpainting and AI-driven inpainting. Manual inpainting: a1) Original scene. b1) Scene with a
hole after removing the desk and chairs. c1) Manual-split patch. d1) Scene after inpainting with copied split patches. AI-driven
inpainting: a2) Scene with a hole. b2) Drawn point clouds as constraints. c2) 2D images after inpainting as guidance. d2) Scene
after inpainting with optimization.

5 Study 1: Efficient 3D Area Selection
5.1 Task Design
Study 1 is designed to evaluate the efficiency of point selection
using our VR user interface and the traditional 2D user interface.
We use SuperSplat [43] as the 2D baseline, as it is a widely adopted
browser-based editor for 3DGS models with a traditional 2D user
interface. SuperSplat provides rectangle, brush, and sphere tools
for point selection. In this study, participants use both interfaces
to complete comparable point selection tasks, enabling a direct
assessment of selection efficiency.

We recruited 18 participants and introduced the basic operations
of GaussianShopVR and SuperSplat to them. Each participant was
given eight minutes per tool to explore and become comfortable
with its operations, with guidance provided as needed. Then, par-
ticipants were informed that they needed to select a petal from a
reconstructed flower scene in three minutes using two interfaces,
as shown in Figure 8. The target petal was volumetric and closely
surrounded by other petals, presenting a realistic 3D selection chal-
lenge. The user-selected points were recorded for later analysis.

5.2 Results and Discussion
We use the Precision, F1 Score, and Intersection over Union (IoU)
as metrics to evaluate point selection in Task 1, and the results
are shown in Table 2. A paired t-test was employed to assess the
differences in performance between GaussianShopVR and Super-
Splat for each of the three metrics at a significance level of 0.05.
The analysis of Table 2 investigates whether there are statistically
significant differences between the two tools’ performance across
18 participants.

During the study, we observed that even after a tutorial and
8-minute hands-on practice, some participants failed to complete

Figure 8: Illustration of task setup of Study 1. The left shows
the original reconstructed flower, and the right shows a pre-
edited version with a highlighted petal. Participants were
asked to select points on the highlighted petal of the pre-
edited flower using GaussianShopVR and SuperSplat [43].

the task with the 2D UI. Pa8, Pa10, Pa13, and Pa15 made mistake
operations after selecting points, which resulted in the selection
being cleared, and they felt very frustrated. Pa2, Pa4, Pa5, and Pa17
failed to clear the mis-selected points selected by raycasting and
hidden in the background 3DGS points, even if they were informed
of this situation in advance. We excluded these four and performed
statistical analysis on the remaining 14 samples.

The paired 𝑡-test for precision revealed a significant difference
between the two tools, with a 𝑡-statistic of 4.03 and a 𝑝-value of
0.0014. A similar significant difference was found for the F1 Score,
with a 𝑡-statistic of 3.51 and a 𝑝-value of 0.0038. Likewise, the 𝑡-test
for IoU produced a 𝑡-statistic of 3.49 and a 𝑝-value of 0.0040. Cohen’s
d was computed for the t-test results of each metric, yielding values
of 1.60 for Precision, 1.29 for F1, and 1.29 for IoU. Since all these



GaussianShopVR: Facilitating Immersive 3D Authoring Using Gaussian Splatting in VR UIST ’25, September 28–October 01, 2025, Busan, Republic of Korea

Table 2: Precision, F1 Score, and IoU with different tools for point selection in Study 1.

Pa1 Pa2 Pa3 Pa4 Pa5 Pa6 Pa7 Pa8 Pa9 Pa10 Pa11 Pa12 Pa13 Pa14 Pa15 Pa16 Pa17 Pa18 Avg.

GaussianShopVR
Precision 93.1% 94.4% 87.9% 69.1% 95.8% 88.2% 70.8% 81.0% 83.0% 81.9% 80.4% 80.8% 95.8% 81.3% 98.6% 86.5% 69.7% 85.9% 84.6%
F1 90.4% 79.0% 86.5% 78.9% 86.8% 91.5% 79.8% 87.8% 82.2% 83.5% 82.0% 88.4% 91.3% 85.2% 88.5% 85.7% 74.4% 79.3% 84.5%
IoU 82.6% 65.3% 76.2% 65.5% 76.7% 84.4% 66.4% 78.3% 69.8% 71.7% 69.5% 79.2% 84.0% 74.3% 79.4% 75.0% 59.2% 65.7% 73.5%

SuperSplat [43]
Precision 44.2% 20.3% 87.8% 31.3% 38.0% 44.8% 71.1% N/A 60.1% N/A 86.8% 51.5% N/A 77.3% N/A 74.2% 27.3% 78.5% 56.7%
F1 59.4% 33.0% 90.1% 42.1% 52.6% 59.1% 82.4% N/A 70.9% N/A 89.7% 64.6% N/A 83.4% N/A 83.6% 42.7% 76.6% 66.4%
IoU 42.3% 19.7% 82.0% 26.7% 35.6% 42.0% 70.0% N/A 55.0% N/A 81.4% 47.7% N/A 71.6% N/A 71.9% 27.1% 62.1% 52.5%

Table 3: Votes on the similarity of the generated model to the
referencemodel in terms of shape, pose, and color, alongwith
the overall generation quality. Some users selected “Unable
to determine,” and these voteswere excluded from the counts.

Model Shape Poseture Color Quality
Baseline Ours Baseline Ours Baseline Ours Baseline Ours

Superman 0 18 1 19 1 13 2 18
Pikachu 0 20 0 20 0 19 0 20
Spiderman 0 20 0 20 0 16 0 19
Rocking Chair 1 11 1 10 2 15 11 7
Scissor 0 20 0 20 0 17 1 19
Lily 0 20 0 20 0 16 1 19
Totoro 0 20 0 20 0 18 1 19

values exceed 0.8, they are considered large effects, indicating that
the observed differences are not only statistically significant but
also practically meaningful. The results show that the VR UI of
GaussianShopVR is more efficient for users to select 3DGS points
compared with its 2D counterpart and thus can support agile and
precise editing area selection.

6 Study 2: Controllable AI Generation
6.1 Task Design
To evaluate whether spatial information provided by Gaussian-
ShopVR enhances controllable AI generation, we employed the
method outlined in Section 4.4.4 to generate 3D models and as-
sess their shape and posture through a user questionnaire. We
designed and distributed a questionnaire with ten questions to eval-
uate participants’ perception of the shape, posture, and quality of
the generated models, as well as their attitude toward using point
clouds as a new method for controlling AI-driven editing.

Specifically, we selected seven 3D presets from Sketchfab [51]
and invited an artist to create corresponding point clouds for each
preset in GaussianShopVR. Subsequently, we generated two ver-
sions of each model: one using only a text prompt and another com-
bining the text prompt with the drawn point clouds. We adopted
SDS-based text-to-3D generation from prior work [66] as the base-
line. For controllable generation with spatial input, we used user-
drawn point clouds as initialization rather than generations, and
added regularization terms in Equation (5) during optimization to
better preserve user-indicated structures and appearance.

6.2 Results and Discussion
We collected a total of 20 responses, with participants answering 10
questions for each of the 7 groups of models. As shown in Table 3,
the majority of participants across all model groups found that
generated results based on text and point cloud prompts were more

Reference Model

Generation with Text Ours

Drawn Points

Figure 9: Illustration of a group of models compared in Study
2. Our method leverages text and point cloud prompts to gen-
erate objects. We posed ten questions to the participants in
the aspects of shape, posture, color, and quality of generated
results, as well as their attitude to input modalities.

similar to the reference models compared to generations based on
text prompts alone. These findings suggest that GaussianShopVR
facilitates more controllable AI generation, thereby enhancing the
3D authoring process.

Additionally, we asked participants about their perception of
text and point cloud prompts. On average, 15.7 participants (𝜎=2.37)
agreed that text prompts accurately described the reference model.
However, only 6.57 participants (𝜎=2.19) believed that text prompts
could generate models with the same shape and posture as the ref-
erence. In contrast, 18.1 participants (𝜎=1.12) felt that point cloud
prompts accurately represented the referencemodel, and 19.7 partic-
ipants (𝜎=1.12) believed that point cloud prompts could successfully
generate models with the same shape and posture as the reference.

The results from Study 2 indicate that GaussianShopVR offers
more controllable AI generation when using drawn point clouds.
Participants also considered point cloud prompts to be a highly
effective tool for generating controllable 3D models.
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Figure 10: Examples of some 3DGS objects reconstructed and
split by participants in Study 3. These objects are then used
for their further authoring.

7 Study 3: Open-Ended 3D Authoring
We designed an open-ended 3D authoring task to explore howGaus-
sianShopVR can facilitate 3D authoring. GaussianShopVR enables
point-level editing of 3DGS and provides users with an immersive
environment. This study aims to investigate how point-editable
3DGS, as a novel creative medium, can enhance 3D authoring, and
how immersion contributes to the authoring experience.

7.1 Task Design
We designed Study 3 as an open-ended task in which participants
were asked to do 3D authoring using the 3D object reconstructed
at the beginning of their session, along with some preset scenes,
objects, and humans in Gaussian Splatting. These presets are gener-
ated from datasets in 3DGS [27], Mip-NeRF 360 [3], and DEGAS [48].
Users were introduced to the operations of GaussianShopVR by
splitting their desired object from the scene reconstructed at the
beginning of the user study. Then, they used the split objects along
with a preset scene to complete an open-ended 3D authoring task.
Finally, we asked each participant to complete a questionnaire and
conducted a short semi-structured interview to collect their feed-
back on the user experience. Study 3 does not include AI-driven
editing features as they have been evaluated in Study 2, and current
AI models do not yet support real-time editing.

We recruited ten users to participate in our study. Four were
male, and six were female. Their average age was 25.2. Half of them
had experience with 3D software or relevant design backgrounds,
while the remaining participants with no 3D authoring experience
were regarded as novice users. On a scale of 1–7, the average self-
reported familiarity of the expert group was 5.40 (𝜎=0.54), while
that of the novice group was 2.40 (𝜎=1.67).

7.2 Results and Discussion
We designed a questionnaire that adapted some questions from the
Questionnaire for User Interface Satisfaction [9] and the System
Usability Scale [2, 26] questionnaire. The questions and results
are shown in Figure 11. In User Experience Ratings (Qa), we asked
participants to rate how much they agreed with five statements
on a scale of 1–7, with 1 being “strongly disagree” and 7 “strongly
agree.” In System Features Ratings (Qb), we asked participants to
rate the usefulness of each feature in helping them complete the
content creation on a scale of 1–7, with 1 being “not useful at all”
and 7 “extremely useful.”

Overall, the participants provided positive ratings on their ex-
perience using GaussianShopVR (10/10 on Qa1). They found it
interesting to do 3D authoring with 3DGS objects in VR.

3DGS as a new creative medium. The main premise of our
work is that 3DGS can be a suitable representation for 3D authoring.
Previous work like PointShopAR [59] proves that simple point
clouds are suitable for environmental prototyping. Compared with
the vanilla point clouds, 3DGS can present precise shapes and
attractive appearances of reconstructed objects. We believe 3DGS
can thus facilitate more generalized creation tasks. Compared with
other 3D software or VR authoring tools, participants agreed that
GaussianShopVR provides a new way for 3D authoring with an
average rating of 6.2 (𝜎=0.87). Participants provided high ratings
on basic VR operations with averages of 6.0 (𝜎=0.77) on Qb1, 6.5
(𝜎=0.67) on Qb3, 6.6 (𝜎=0.49) on Qb4, and 6.2 (𝜎=0.6) on Qb5.

P8 noted, “Meshes can also achieve good results, but the opera-
tions are not intuitive. You have to practice a lot and spend a lot of
time.” In contrast, 3DGS reconstruction enables quick acquisition
of 3D assets and received an average rating of 6.6 from participants.
However, content creators are not only interested in capturing real-
world assets. They care more about transforming these assets to
express their ideas. P8, a new media artist, remarked, “It is great
to obtain 3D assets like taking 3D photos, but I care more about how
to transform them into my artwork. Your project seems to provide a
way for this novel representation.” P4 found editing 3DGS points in
VR highly intuitive, and P8 believed such operations can support
personalized artistic expression. Overall, user feedback suggests
that GaussianShopVR facilitates 3DGS as a new creative medium
by offering smooth and intuitive editing capabilities.

Immersive 3D authoring. Realistic 3DGS objects combined
with intuitive VR interactions significantly enhanced participants’
immersive experiences during 3D authoring with GaussianShopVR.
All participants explicitly agreed that the immersive spatial context
and realistic visual feedback facilitated clear and effective expres-
sion of their creative ideas (Qa5). For example, P8 highlighted the
system’s unique advantage, remarking, “The system enabled im-
mersive prototyping inspired by nature and can help me prototype
in situ,” emphasizing how immersion directly fosters creative inspi-
ration and situational relevance in the authoring process.

Participants further underscored that the immersive quality of
GaussianShopVR notably improved their authoring efficiency. Qual-
itative feedback consistently highlighted the importance of the user
perspective for seamless 3D interaction. Specifically, P4 and P7 ex-
plained the limitations of traditional 2D interfaces, which typically
adopt an object-centered perspective. They described how this ap-
proach frequently results in disorientation, as objects remain static
while the user’s viewpoint continuously shifts. This constant need
for manual reorientation disrupts workflow and hampers creativ-
ity. In contrast, participants praised the user-centered perspective
of the VR interface in GaussianShopVR. This immersive design
naturally adapts to users’ movements and actions, maintaining a
coherent spatial orientation. As P2 articulated, “By minimizing the
need for constant view recalibration and offering an intuitive navi-
gation experience, it supports me in staying focused and engaged.”
Overall, qualitative feedback strongly supports that the immersive,
user-centric environment provided by GaussianShopVR enhances
both productivity and creative satisfaction.
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Figure 11: Ratings of a) the overall user experience and b) each feature of GaussianShopVR. The color of a bar represents how
much participants agreed with a statement or how useful they found a feature. The number in the bar represents the number
of participants who submitted the same rating.

Figure 12: Examples of 3DGS content created using GaussianShopVR, showcasing its capability to enhance creative freedom
and editing precision to facilitate 3D authoring.
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8 Conclusion
In conclusion, this paper presents GaussianShopVR, an immersive
3D authoring VR system, leveraging the advantages of the 3DGS
representation in delivering immersive environments through pho-
torealistic, high-FPS rendering and seamless integration with AI for
editing. GaussianShopVR leverages efficient 3D target area identifi-
cation and spatial control to further facilitate the authoring process,
which is evaluated via Study 1 (𝑁=18) and Study 2 (𝑁=20). Study 3
(𝑁=10) demonstrates that GaussianShopVR supports diverse design
and creation needs with a suite of enhanced editing tools, providing
an intuitive and immersive environment for 3D authoring.

Our system demonstrates the potential of using 3DGS as a new
medium for immersive 3D content creation. The photorealism and
rendering speed of 3DGS can facilitate immersive 3D authoring in
VR. However, there are some limitations and many areas for future
work to explore the potential of this new medium:

Relighting. GaussianShopVR can quickly import static photoreal-
istic objects into the 3D editing scene but may encounter inconsis-
tent environmental lighting. Although GaussianShopVR supports
RGB curve adjustments for target areas while preserving texture
details, the workload is much greater than that of photo editing.
Novice users P1 and P2 said they did not know how to use the RGB
curves to adjust lighting until they had used this function many
times, while expert user P6 complained, “Adjusting the lighting
for the whole environment is hard to achieve.” There are already
some works that enable relighting for 3DGS, such as GS3 [4] and
GS-ID [17]. GS-ID can decompose illumination from reconstructed
scenes and relight them. We believe it is possible to integrate such
a lighting module into our system.

Resolution. The 3DGS objects are reconstructed from a sequence
of photos, so the resolution of the objects is limited to that of the
photos. In Study 3, P5 wanted to scale up the reconstructed teddy
bear to be a huge monster in a garden scene, but the rendering
effect turned out to be very blurry. Although the teddy bear was
reconstructed from 4K photos, it only occupied a portion of the
images, and the garden scene is much larger. Another observation
is that some 3DGS points belonging to different objects are tangled
and overlapped, especially with small objects, and it is hard to
separate them. This is similar to the blending of pixels in images,
where sometimes a pixel is hard to identify as belonging to which
object. We found that if we want to reuse reconstructed objects in
any scene, we need to solve the problem of the limited resolutions
of 3DGS objects, requiring advanced super-resolution techniques.
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